

Fall 2021

ADVANCED TOPICS IN COMPUTER VISION

Atlas Wang

Assistant Professor, The University of Texas at Austin

Deep Learning on the Edge

- Deploying CNNs on resource-constrained platforms/at the edge
- Two Scenarios: Inference (pre-trained model), and Training (online adaptation)

Real-Time Machine Learning (RTML)

PROGRAM SOLICITATION NSF 19-566

National Science Foundation

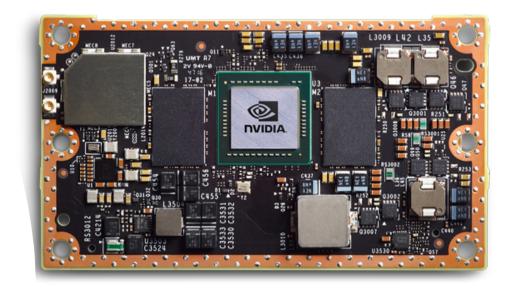
Directorate for Computer and Information Science and Engineering Division of Computing and Communication Foundations

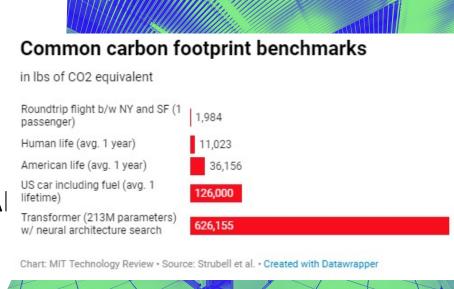
Directorate for Engineering
Division of Electrical, Communications and Cyber Systems

RTML Program goal: "for next-generation **co-design** of RTML algorithms and hardware, with the principal focus on developing novel hardware architectures and learning algorithms in which **all stages of training** (including incremental training, hyperparameter estimation, and deployment) can be performed in real time."

Deep Learning on the Edge

- Three Top Concerns:
 - Storage and Memory
 - Speed or Latency
 - Energy Efficiency
- The three goals all pursue "light weight"
- ... but they are often not aligned*
- ... so need to **consider all** in implementation
- ... and for both Inference and Training
- Broad economic viability requires energy efficient Al
- Energy efficiency of a brain is 100x better than current SOTA hardware!





Model Compression

Training Phase:

- The easiest way to extract a lot of knowledge from the training data is to learn many different models in parallel.
- 3B: Big Data, Big Model, Big Ensemble
- Imagenet: 1.2 million pictures in 1,000 categories.
- AlexNet: ~ 240Mb, VGG16: ~550Mb

Testing Phase:

- Want small and specialist models.
- Minimize the amount of computation and the memory footprint.
- Real time prediction
- Even able to run on mobile devices.

Two Main Streams

- "Transfer": How to transfer knowledge from big general model (teacher) to small specialist models (student)?
 - Example: "Distilling the Knowledge in a Neural Network", G. Hinton et. al., 2015
- "Compress": How to reduce the size of the same model, during or after training, without losing much accuracy.
 - Example: "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", S. Han et. al., 2016
- Comparison: Knowledge Transfer provides a way to train a <u>new small model</u> inheriting from big general models, while Deep Compression Directly does the surgery on big models, using a pipeline: pruning, quantization & Huffman coding.

Knowledge Transfer/"Distillation": Main Idea

- Introduce "Soft targets" as one way to transfer the knowledge from big models.
 - Classifiers built from a softmax function have a great deal more information contained in them than just a classifier;
 - The correlations in the softmax outputs are very informative.

- Hard Target: the ground truth label (one-hot vector)
- Soft Target: $q_i = \frac{exp(z_i/T)}{\sum_{j} exp(z_j/T)}$ T is "temperature", z is logit
- More information in soft targets

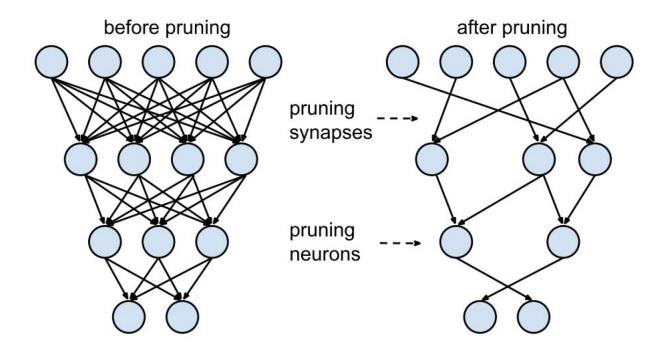
cow	dog	cat	car	original hard
0	1	0		targets
.05	dog .3	cat	car .005	softened output

Hinton's Observation: If we can extract the knowledge from the data using very big models or ensembles of models, it is quite easy to distill most of it into a much smaller model for deployment.

More follow-up observations: teachers can be weak, or even the same as student ...

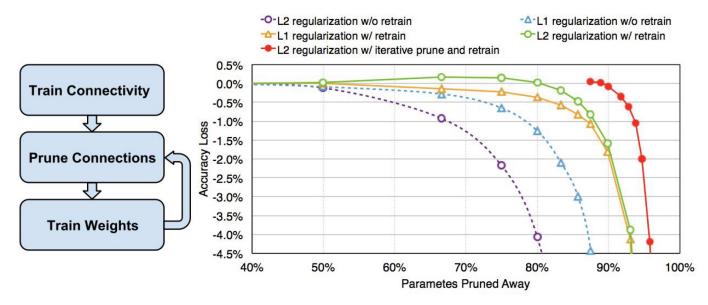
Deep Compression: Main Idea (i)

Pruning



Deep Compression: Main Idea (ii)

Retrain to Recover Accuracy



Network pruning can save 9x to 13x parameters without drop in accuracy

Deep Compression: Main Idea (iii)

Weight Sharing (Trained Quantization)

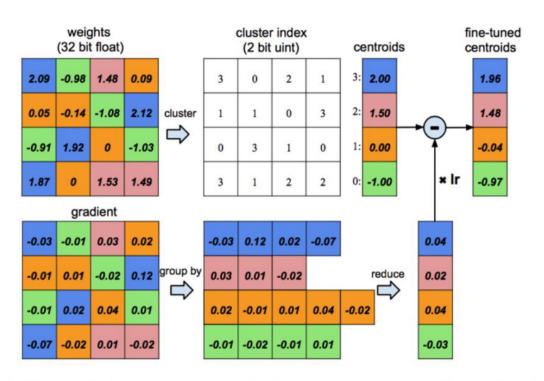
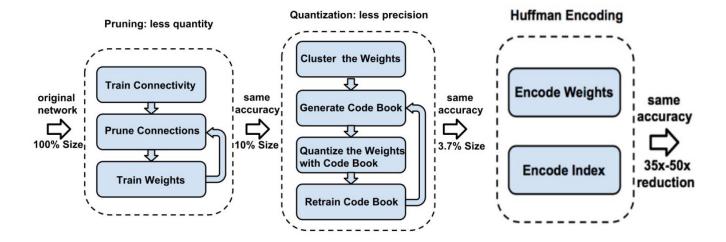


Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom)

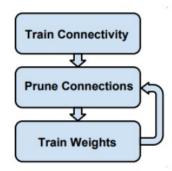
Deep Compression: Main Idea (iv)

Huffman Coding

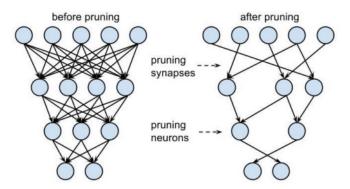


More About Pruning

- Determining **low-saliency parameters**, given a pre-trained network
- Follows the framework proposed by LeCun et al. (1990):
 - 1. Train a deep model until convergence
 - 2. Delete "unimportant" connections w.r.t. a certain criteria
 - 3. Re-train the network
 - 4. Iterate to step 2, or stop

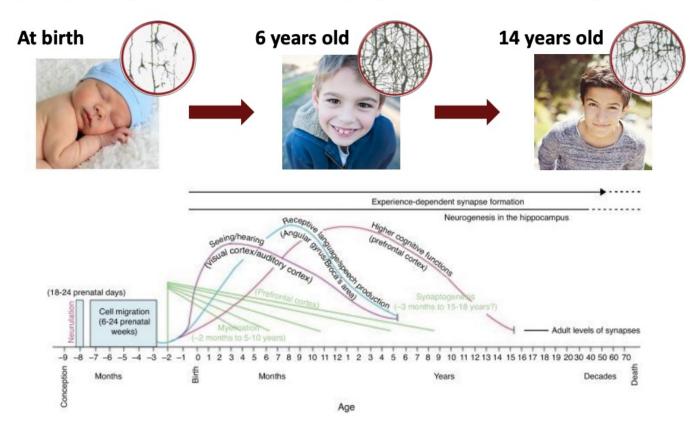


- Defining which connection is unimportant can vary
 - Weight magnitudes (L², L¹, ...)
 - Mean activation [Molchanov et al., 2016]
 - Avg. % of Zeros (APoZ) [Hu et al., 2016]
 - Low entropy activation [Luo et al., 2017]
 - ..



Human Brain Prunes too!

- Human brains are also using pruning schemes as well
- Synaptic pruning removes redundant synapses in the brain during lifetime



Optimal Brain Damage (OBD)

- Network pruning perturbs weights W by zeroing some of them
- How the loss L would be changed when W is perturbed?
- OBD approximates L by the 2^{nd} order Taylor series:

$$\delta L \simeq \underbrace{\sum_{i} \frac{\partial L}{\partial w_{i}} \delta w_{i}}_{\text{1st order}} + \underbrace{\frac{1}{2} \sum_{i} \frac{\partial^{2} L}{\partial w_{i}^{2}} \delta w_{i}^{2} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} L}{\partial w_{i} \partial w_{j}} \delta w_{i} \delta w_{j}}_{\text{2nd order}} + O(||\delta \mathbf{W}||^{3})$$

- Problem: Computing $H=\left(\frac{\partial L}{\partial w_i\partial w_j}\right)_{i,j}$ is usually intractable
 - Requires $O(n^2)$ on # weights
 - · Neural networks usually have enormous number of weights
 - e.g. AlexNet: **60M** parameters \Rightarrow H consists \approx **3**. **6** \times **10**¹⁵ elements

Optimal Brain Damage (OBD)

- Problem: Computing $H=\left(\frac{\partial L}{\partial w_i\partial w_j}\right)_{i,j}$ is usually intractable
- Two additional assumptions for tractability

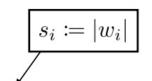
1. Diagonal approximation:
$$H = \frac{\partial^2 L}{\partial w_i \partial w_j} = 0$$
 if $i \neq j$

- **2. Extremal** assumption: $\frac{\partial L}{\partial w_i} = 0 \quad \forall i$
 - W would be in a local minima if it's pre-trained
- Now we get: $\delta L \simeq \frac{1}{2} \sum_i \frac{\partial^2 L}{\partial {w_i}^2} \delta w_i^2 + O(||\delta \mathbf{W}||^3)$
 - It only needs $\operatorname{diag}^i(H) \coloneqq \left(\frac{\partial^2 L}{\partial w_i^2}\right)_i$
- diag(H) can be computed in O(n), allowing a backprop-like algorithm
 - For details, see [LeCun et al., 1987]

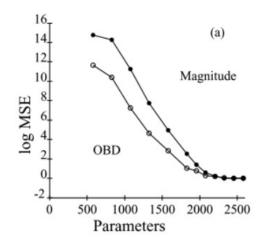
Optimal Brain Damage (OBD)

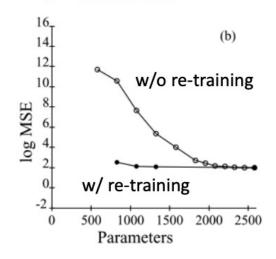
How the loss L would be changed when W is perturbed?

$$L(\delta\mathbf{W})\simeq\frac{1}{2}\sum_i\frac{\partial^2L}{\partial{w_i}^2}\delta{w_i}^2=:\sum_i\frac{1}{2}h_{ii}\delta{w_i}^2$$
 • The saliency for each weight $\Rightarrow s_i\coloneqq\frac{1}{2}h_{ii}|w_i|^2$

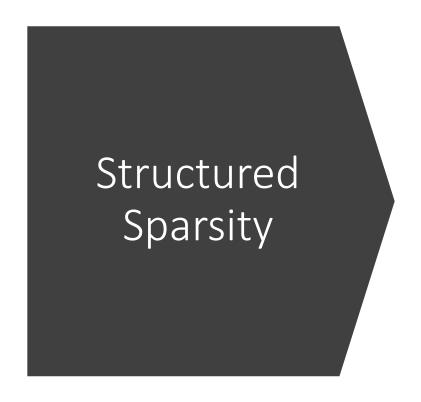


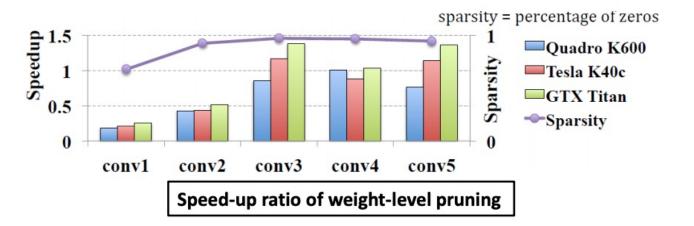
- OBD shows robustness on pruning compared to magnitude-based deletion
- After re-training, the original test accuracy is recovered





- "Un-structured" weight-level pruning may not engage a practical speed-up
 - Despite of extremely high sparsity, actual speed-ups in GPU is limited





Non-structured sparsity (poor data pattern)

	20 12 12 12 12 12 12 12 12 12 12 12 12 12		
--	---	--	--

Structured sparsity (regular data pattern)

5× speedup after concatenation of nonzero rows and columns

Structured sparsity

• Structured sparsity can be induced by adding group-lasso regularization

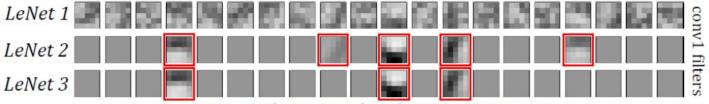
$$\min_{\mathbf{W}} \mathcal{L}(\mathbf{W}) + \lambda \sum_{l=1}^{L} R_g(\mathbf{W}^{(l)}), \ R_g(\mathbf{w}) = \sum_{g=1}^{G} \|\mathbf{w}^{(g)}\|_2$$

• Filter-wise and channel-wise: # filters # channels $R_g(\mathbf{W}^{(l)}) = \sum_{n_l=1}^{N_l} \|\mathbf{W}_{n_l,:,:,:}^{(l)}\|_2 + \sum_{c_l=1}^{C_l} \|\mathbf{W}_{:,c_l,:,:}^{(l)}\|_2$

Table 1: Results after penalizing unimportant filters and channels in *LeNet*

LeNet #	Error	Filter # §	Channel # §	FLOP §	Speedup §
1 (baseline)	0.9%	20-50	1-20	100%—100%	$1.00 \times -1.00 \times$
2	0.8%	5—19	1—4	25%—7.6%	$1.64 \times -5.23 \times$
3	1.0%	3—12	1—3	15%—3.6%	$1.99 \times -7.44 \times$

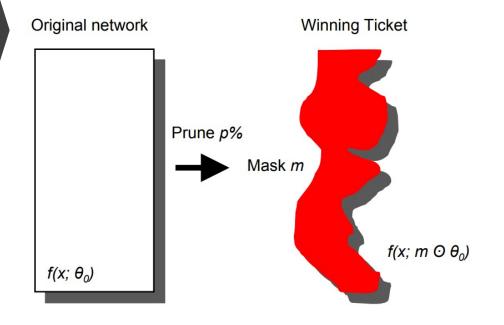
[§]In the order of conv1—conv2



Fewer but smoother feature extractors

Lottery Ticket Hypothesis

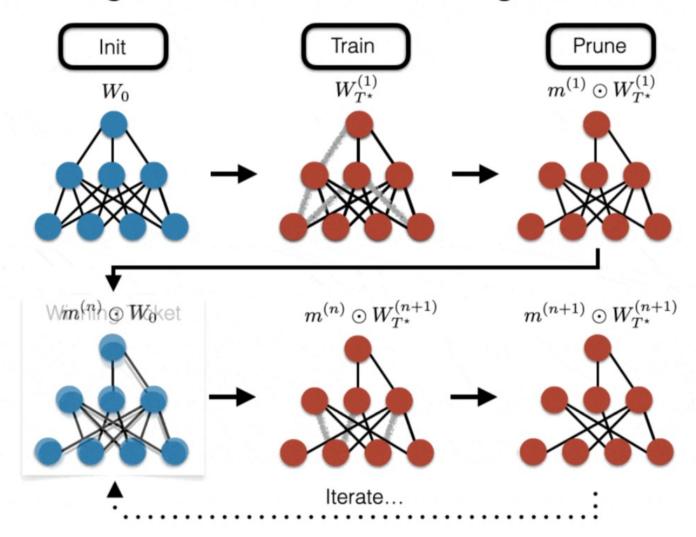
The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnetwork that is initialized such that—when trained in isolation—it can match the test accuracy of the original network after training for at most the same number of iterations.

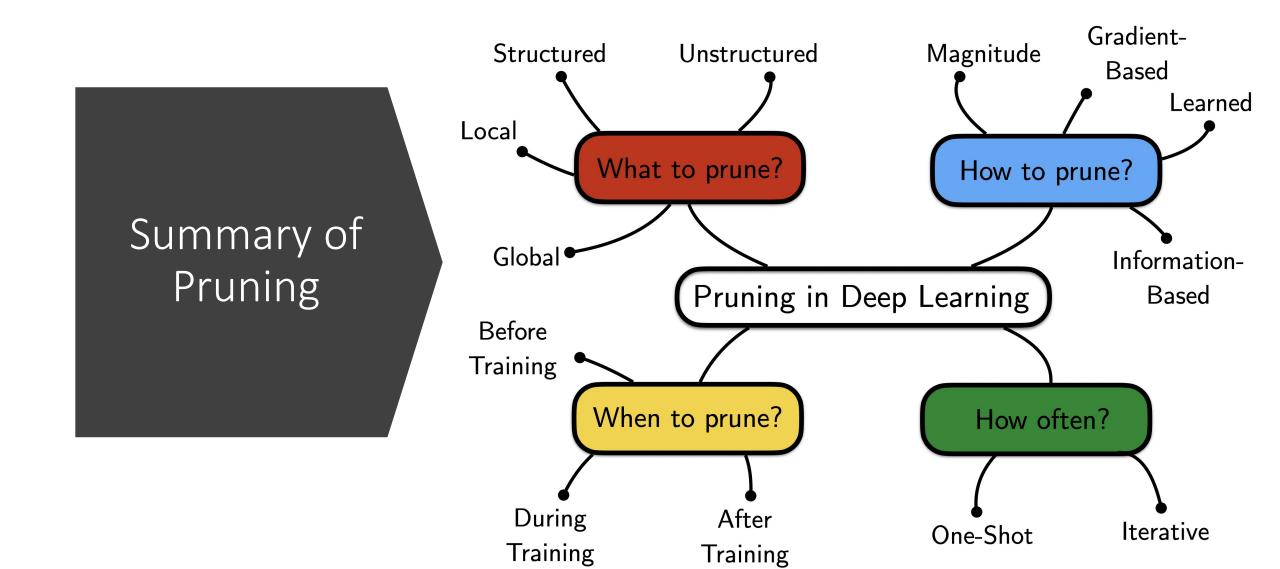


- Winning Ticket gives
 - · Better or same results
 - Shorter or same training time
 - Notably fewer parameters
 - Is trainable from the beginning

Searching for Tickets: Iterative Magnitude Pruning

Lottery
Ticket
Hypothesis

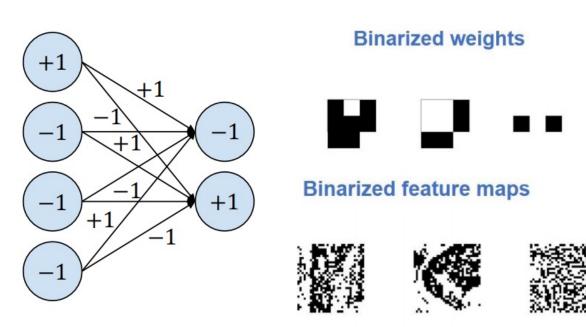




- Neural networks can be even binarized (+1 or -1)
 - DNNs trained to use binary weights and binary activations
- Expensive 32-bit MAC (Multiply-ACcumulate) ⇒ Cheap 1-bit XNOR-Count
 - "MAC == XNOR-Count": when the weights and activations are ± 1

1s in bits

More About Quantization



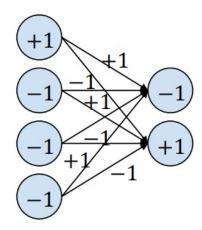
Binary Neural Networks

- Idea: Training real-valued nets (W_r) treating binarization (W_b) as noise
 - Training W_r is done by stochastic gradient descent
- Binarization ($W_r \to W_b$) occurs for each forward propagation
 - On each of weights: $W_b = \operatorname{sign}(W_r)$
 - ... also on each **activation**: $a_b = \operatorname{sign}(a_r)$
- Gradients for W_r is estimated from $\frac{\partial L}{\partial W_b}$ [Bengio et al., 2013]
 - "Straight-through estimator": Ignore the binarization during backward!

$$\frac{\partial L}{\partial W_r} = \frac{\partial L}{\partial W_b} \mathbf{1}_{|W_r| \le 1}$$

$$\frac{\partial L}{\partial a_r} = \frac{\partial L}{\partial a_b} \mathbf{1}_{|a_r| \le 1}$$

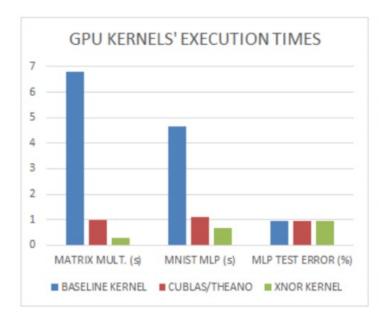
- Cancelling gradients for better performance
 - When the value is too large



Binary Neural Networks

- BNN yields 32x less memory compared to the baseline 32-bit DNNs
 - ... also expected to reduce energy consumption drastically
- 23x faster on kernel execution times
 - BNN allows us to use XNOR kernels
 - 3.4x faster than cuBLAS

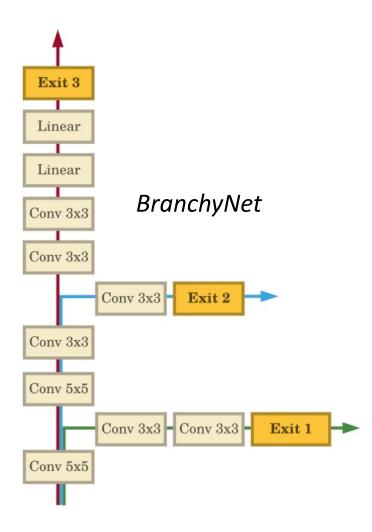
Operation	MUL	ADD
8bit Integer	0.2pJ	0.03pJ
32bit Integer	3.1pJ	0.1 pJ
16bit Floating Point	1.1pJ	0.4pJ
32tbit Floating Point	3.7pJ	0.9 pJ

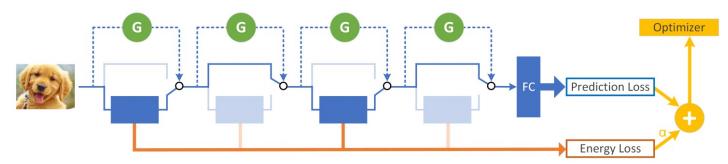


• BNN achieves comparable error rates over existing DNNs

Dynamic Inference

- Only execute a fraction of the network per needed
- Can enable both "input-dependent" and "resource-dependent" forms





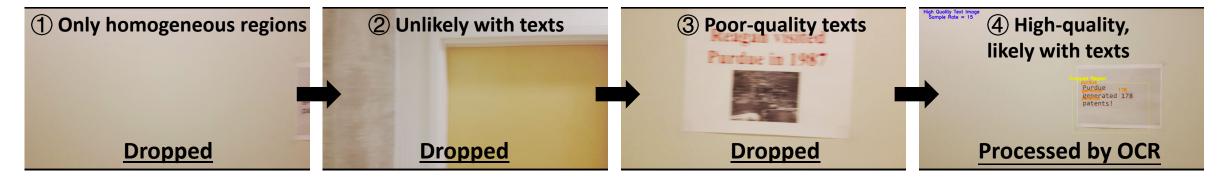
Real-World Efficient ML: Way to Go

- Jointly utilizing several compression means
 - Also, can choose efficient "by-design" models (MobileNets, or even non-deep models, etc.)
 - Channel pruning is in fact very similar to NAS
- Data processing is often a key concern, maybe more important
- Hardware co-design is another key concern
- Resource constraints & user demands often change over time
- From single task to multi-task and lifelong learning ...

2020 Low-Power Computer Vision Challenge

Demo: Energy-Efficient UAV-Based Text Spotting System

- Task: accurate detecting signs and recognizing texts in the video, captured by an unmanned aerial vehicle (UAV), with minimal energy cost as possible (Hardware: Raspberry Pi 3B+)
- Our solution won 2nd prize in the high-visibility IEEE CVPR 2020 Low-Power Computer Vision (LPCV) Challenge, among 11 university & company teams that submitted 84 independent solutions.



Energy-Efficient Training: Prevailing Demands

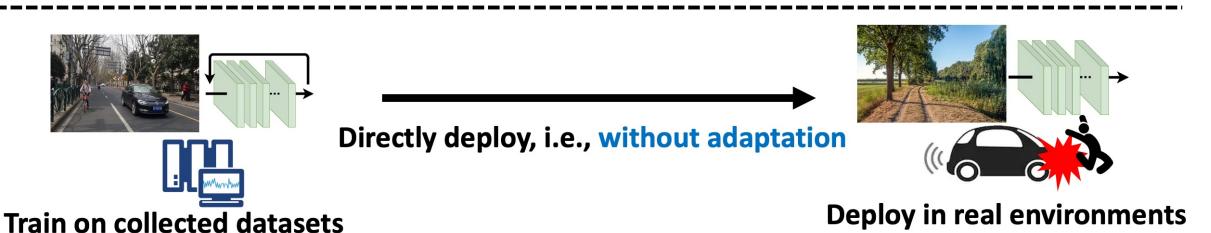
- Shifting model training from the cloud to the edge
 - Facilitating personalization; saving bandwith/communication energy; protecting privacy
- Deep learning has a terrible carbon footprint
 - "Training a single AI model can emit as much carbon as five cars in their lifetimes", MIT Tech Review

On-Device Training (Adaptation) is on Growing Demand

Train on collected datasets

Adapt to real environments

Deploy in real environments



Problem Setting

- We consider the most basic CNN training, assuming both the model structure and the dataset to be pre-given, training from scratch
 - Trim down the total energy cost for in-situ, resource-constrained training.
 - not usually the realistic IoT case, but address it as a starting point
- Many existing works are on accelerated CNN training
 - ... they mostly focus on reducing the total training time in resource-rich settings, such as by distributed training in large-scale GPU clusters

From Inference to Training: Lessons and Challenges

• Training v.s. Inference: one-pass feedforward v.s. iterative forward + backward

Lessons that we learned from Inference:

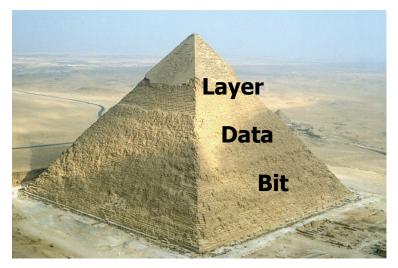
- Model parameters are not born equally, and many redundancies do exist
- Know your specific goal: saving memory, latency and energy are often not aligned
- To achieve energy goal, realistic energy models and/or hardware measurements are very helpful
- Consider a more "end-to-end" effort beyond just the model itself (data, hardware, architecture...)

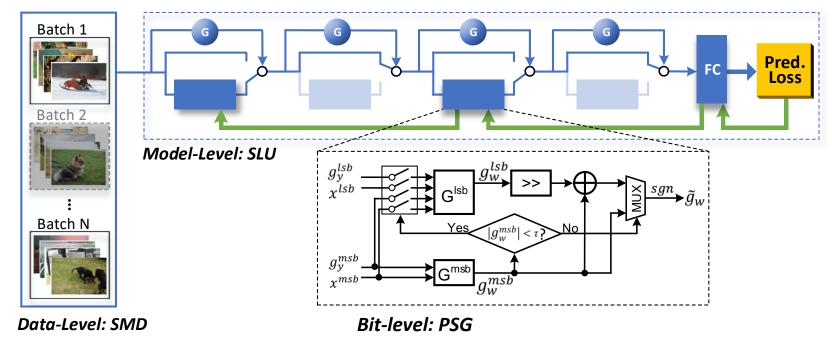
New Challenges posed for Training:

- Saving per-sample (mini-batch) complexity (both feed-forward and backward)
- The empirical convergence (how many iterations needed) matters more than per-MB complexity
- Data access/movement bottlenecks are (even more) crucial

E2-Train: Energy-Efficient CNN Training [NeurIPS'2019]

Motivation:





"Three-Pronged" Approach:

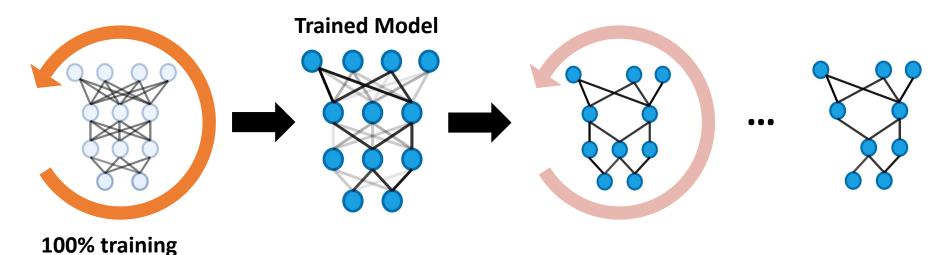
- Data-Level: stochastic mini-batch dropping
- Layer-Level: selective layer update
- Bit-Level: predictive sign gradient descent

Datasets	Models	Accuracy (vs. Original One)	Energy Savings
CIFAR-10	MobileNetV2	92.06% (vs. 92.47%)	88%
	ResNet-110	93.01% (vs. 93.57%)	83%
CIFAR-100	MobileNetV2	71.61% (vs. 71.91%)	88%
	ResNet-110	71.63% (vs. 71.60%)	84%

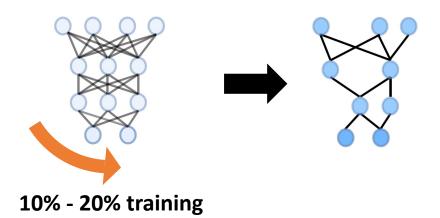
Energy savings is quantified based on FPGA implementation

EB-Train: Training via Early-Bird Lottery Ticket [ICLR'2020]

Progressive Pruning and Training (e.g., [J. Frankle, ICLR 2019])



Early-Bird Train (Proposed)



For the first time:

- 1. We discover the existence of Early-Bird (EB) Tickets
- 2. We propose a detector of low cost to detect EB Tickets
- We leverage the existence of EB Tickets to develop an efficient training scheme
- ➤ 5.8× 10.7× reduced training energy with a comparable or even better accuracy over the most competitive baseline

