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ML researchers like to go BIG

Big NNs seem to be more |
capable at everything... Parameters
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Deep Learning on a Budget

Three Top Concerns:
e Storage and Memory
* Speed or Latency
* Energy Efficiency

M (3533 C3531
3530 C3532

The three goals all pursue “light weight”
.. but they are often not aligned*

Common carbon footprlnt benchmarks

* ... 50 need to consider all in implementation i s of CO2 equivalent
. . Roundtrip fli /W and SF (1 -
* ... and for both Inference and Training passengen ol |Im4
Human life (avg. 1 year) 11,023
American life (avg. 1 year) . 36,156

. . . . . . hlfi;;rei?cudingfue\|ja'v'g,1
* Broad economic viability requires energy efficient Al ™

Transformer (213M parameters)
w/ neural architecture search

Energy efficiency of a brain is 100x better than

current SOTA hardware!

* Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks, IEEE ISSCC 2016



Model Compression

Training Phase:

o The easiest way to extract a lot of knowledge from the training data is to learn many different
models in parallel.

o 3B: Big Data, Big Model, Big Ensemble
o Imagenet: 1.2 million pictures in 1,000 categories.
o AlexNet: ~ 240Mb, VGG16: ~550Mb
Testing Phase:
o Want small and specialist models.

o  Minimize the amount of computation and the memory footprint.
o Real time prediction
O

Even able to run on mobile devices.



Two Main Streams

* “Transfer”: How to transfer knowledge from big general model (teacher) to small
specialist models (student)?
* Example: “Distilling the Knowledge in a Neural Network”, G. Hinton et. al., 2015

* “Compress”: How to reduce the size of the same model, during or after training,
without losing much accuracy.

* Example: “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding”, S. Han et. al., 2016

 Comparison: Knowledge Transfer provides a way to train a new small model
inheriting from big general models, while Deep Compression Directly does the

surgery on big models, using a pipeline: pruning, quantization & Huffman coding.



Knowledge Transfer/“Distillation”: Main Idea

e Introduce “Soft ta rgets” as one e Hard Target: the ground truth label (one-hot vector)

way to transfer the knowledge  ® Soft Target:  exp(z/T) T is “temperature”, z is logit

from big models. 1T S ean(z;/T)

e Classifiers built from a softmax
function have a great deal

e More information in soft targets

cow dog cat car

more information contained in = 1 - o] original hard
them than just a classifier; iBrgeLs
: : cow dog cat car
* The correlations |.n the softmax 3 : o ise o o
outputs are very informative. - - 005] " of ensemble

Hinton’s Observation: If we can extract the knowledge from the data using very big models or
ensembles of models, it is quite easy to distill most of it into a much smaller model for deployment.

More follow-up observations: teachers can be weak, or even the same as student ...
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Deep

Compression
Main Idea (ii)

Retrain to Recover Accuracy

e N
Train Connectivity
. J
L 2
e a
Prune Connections
o _J
L 2
& A
Train Weights
\ >/

-O-L2 regularization w/o retrain
L1 regularization w/ retrain
~®-| 2 regularization w/ iterative prune and retrain

“4-L1 regularization w/o retrain
“O-L2 regularization w/ retrain

40% 50% 60% 70%

80% 90% 100%

Parametes Pruned Away

Network pruning can save 9x to 13x parameters without drop in accuracy



Weight Sharing (Trained Quantization)

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids

-0.98 | 1.48 | 0.09 30| 2|1 3:- .

Dee p 0.05 | -0.14 | -1.08 cluster | 1 1 | o | 3 | 2| %80 i 1.48
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom)



Huffman Coding

Deep

Quantization: less precision Huffman Encoding
. Pruning: less quantty
O > i = R S - - ~
Compression — T o \
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* Determining low-saliency parameters, given a pre-trained network

* Follows the framework proposed by LeCun et al. (1990):

Train Connectivity

1. Train a deep model until convergence % b \
2. Delete “unimportant” connections w.r.t. a certain criteria k""‘“’ °°""°°"°"‘J
M ore A b out 3. Re-train the network : T y

4. Iterate to step 2, or stop | Meamegos

* Defining which connection is unimportant can vary
* Weight magnitudes (L?, L}, ...)

before pruning after pruning

* Mean activation [Molchanov et al., 2016]
Avg. % of Zeros (APoZ) [Hu et al., 2016]
Low entropy activation [Luo et al., 2017]

pruning
synapses

-——

pruning
- -
neurons




1000 Trillion

Synapses \
50 Trillion 500 Trillion

Human Brain Synapses Synapses
Prunes too! &

Newborn 1 year old Adolescent



Network pruning perturbs weights W by zeroing some of them

How the loss L would be changed when W is perturbed?

OBD approximates L by the 2" order Taylor series:

Optimal Brain T DECO S S S i vt g0

Sw + =
2 ; 8’(1)7;2 wz+2 — 8’(018’11)]

o \ V)

Damage (OBD)

1st order 2nd§rder

/

Problem: Computing H = (aw‘?gw,) is usually intractable
PO i

* Requires 0(n?) on # weights

* Neural networks usually have enormous number of weights

- e.g. AlexNet: 60M parameters = H consists ~ 3.6 x 101 elements



Problem: Computing H = (a aé’ ) is usually intractable
Wi /i,

Two additional assumptions for tractability

1. Diagonal approximation: H = L —q if =

8wiawj

2. Extremal assumption: 9 =( Vi

* W would be in a local minima if it’s pre-trained

Optimal Brain

Damage (OBD)

1 o’L . 3
* Now we get: 0L ~ 5 8w-25wi + O(||[oW||?)
* It only needs diag(H) := (%)

diag(H) can be computed in 0(n), allowing a backprop-like algorithm
* For details, see [LeCun et al., 1987]



How the loss L would be changed when W is perturbed?

1 2L 1
L(6W) ~ 5 gw.25wi2 =: Z éhiiéwf

1
The saliency for each weight = s; == §hii|wi|2 s; = |w;|

/

OBD shows robustness on pruning compared to magnitude-based deletion

Optimal Brain

After re-training, the original test accuracy is recovered

Damage (OBD)

16. 16,
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Structured

Sparsity

“Un-structured” weight-level pruning may not engage a practical speed-up

* Despite of extremely high sparsity, actual speed-ups in GPU is limited

sparsity = percentage of zeros

215 o :
= 1 / B l EJQuadro K600
)
g,_ = ETesla K40c
YN § CIGTX Titan
- v1 ~“@-Sparsity
| :

convl conv2 convd conv4 convs

Speed-up ratio of weight-level pruning

Non-structured sparsity (poor data pattern)

Stl uctm ed Spdl 51ty (1 egulal data pattel n)
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* Structured sparsity can be induced by adding group- Iasso regularization

min £(W +A§:R (W), }Hmﬁmz
W
=1
* Filter-wise and channel-wise: #filters i channels
l l
SR Ry(W®) = SV W+ RS W,
S p a rS |ty Table 1: Results after penalizing unimportant filters and channels in LeNert
LeNet # Error  Filter#° Channel #° FLOP * Speedup *
| (baseline) 0.9% 20—50 1—20 100%—100%  1.00x—1.00x
2 0.8% 5—19 1—4 25%—71.6% 1.64x—35.23 %
3 1.0% 3—12 1—3 15%—3.6% 1.99x—7.44 x

S
*In the order of convI—conv2

Lener 1 G (5 50 [ 1 P ) 0 0 S R I 9 S 1

venvet 2 [N I N O O = T S
Levees [ IFEEEEEEN =N

Fewer but smoother feature extractors



* Neural networks can be even binarized (+1 or -1)
* DNNs trained to use binary weights and binary activations

* Expensive 32-bit MAC (Multiply-ACcumulate) = Cheap 1-bit XNOR-Count

* “MAC == XNOR-Count”: when the weights and activations are +1 \
# 1s in bits

More About

Binarized weights

Quantization




* Idea: Training real-valued nets (W) treating binarization (W},) as noise
* Training W, is done by stochastic gradient descent

* Binarization (W,. - W),) occurs for each forward propagation
* On each of weights: W, = sign(WW,.)
« ... also on each activation: a;, = sign(a,)

Binary

N eura | * Gradients for W, is estimated from ;—w% [Bengio et al., 2013]
* “Straight-through estimator”: Ignore the binarization during backward!
Networks N

oW, aWbIIerﬁl

oL __ 8L1
da,  Oayp la.|<1

* Cancelling gradients for better performance
* When the value is too large
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Real-World Efficient ML: Way to Go

* Jointly utilizing several compression means

* Also, can choose efficient “by-design” models (MobileNets, or even non-deep
models, etc.)

* Channel pruning is in fact very similar to NAS
* Data processing is often a key concern, maybe more important
* Hardware co-design is another key concern
* Resource constraints & user demands often change over time

* From single task to multi-task and lifelong learning ...



VI TA

Demo: Energy-Efficient UAV-Based Text Spotting System

 Task: UAV-based low-energy video
understanding (Raspberry Pi 3B+)

* QOur group has been leading the show!

e 2021 IEEE Low-Power Computer Vision (LPCV)
Challenge, 1st prize (video track) among 31
university & company teams that submitted 249
independent solutions

* 2020 IEEE Low-Power Computer Vision (LPCV)
Challenge, 2nd prize (video track), among ~ 90
solutions

(@ Only homogeneous regions

=)

—

@) Unlikely with texts (3 Poor-quality texts FEE (@ High-quality,
Vil - likely with texts

LLSL | e

Purdue

Processed by OCR

Dropped Dropped
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https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/




Whatis Sparse (in Neural Networks)?

Sparsity in Deep Neural Networks:

Pruning, Lottery Tickets, Sparse Training,

Low-Rank, Mixture of Experts...
(Hanetal. 16, Frankle et al. 18, Evcietal. 20, Hu et al. 21)



What does Sparsity offer usin neural networks?

Efficiency

J FLOPs

J Wall-clock Time
d Memory

d Energy, etc.

Reliability

d Cross-domain Generalization
d Few-shotLearning

Recent reference for “overview”: D Robustness, etc.

* S.Liuand Z. Wang, “Ten Lessons We
Have Learned in the New” Sparseland®: A
Short Handbook for Sparse Neural
Network Researchers”, ArXiv 2023



https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pxFyKAIAAAAJ&sortby=pubdate&citation_for_view=pxFyKAIAAAAJ:c1inI0PF7pQC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pxFyKAIAAAAJ&sortby=pubdate&citation_for_view=pxFyKAIAAAAJ:c1inI0PF7pQC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pxFyKAIAAAAJ&sortby=pubdate&citation_for_view=pxFyKAIAAAAJ:c1inI0PF7pQC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pxFyKAIAAAAJ&sortby=pubdate&citation_for_view=pxFyKAIAAAAJ:c1inI0PF7pQC

Sparsity in Neural Networks is Versatile!

Sparsification
Model Sparsity Ephemeral Sparsity .
(per model) (per example)
Weights Neurons Neuron-like Dropout Gradients  Errors  Optimizer

(filters/channels/heads)
$/\ : : structured sparsity
unstructured  structured

(e.g., fine-grained) (e.g., blocked/strided)

affects inference + forward pass

(Activations/Weights) g1 €1 State

. gradient-based optimization
affects training

Activations Conditional computation

(e.g., ReLU) (route each example through a ‘a‘
inference + forward pass Different sparse subnetwork)

Source: Hoefler, T, Alistarh, D., Ben-Nun, T., Dryden, N., & Peste, A., “Sparsity in Deep Learning: Pruning and
growth for efficient inference and training in neural networks”, JMLR 2021.



is Versatile!

A A A

train then sparsify sparsify during training sparse training
E (including iterative sparsification) (including regrowth)
3
2
©
@
Q0
£
>
c

> - . >
T Iterations

Figure 7: Overview of structural sparsification schedules.

Source: Hoefler, T, Alistarh, D., Ben-Nun, T., Dryden, N., & Peste, A., “Sparsity in Deep Learning: Pruning and
growth for efficient inference and training in neural networks”, JMLR 2021.



Sparsity in Neural Networks is Versatile!

v

Filters
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Sparsity in Neural Networks is Versatile!

A finer-grained overview plot
by Robert Lange, TU Berlin

(only illustrating sparsity in
weights, e.g., “pruning”)

Source:
https://roberttlange.qgithub.io
/posts/2020/06/lottery-ticket-

hypothesis/

Structured

| ocal

Global

Before
Training

Unstructured

Pruning in Deep Learning

When to prune?

During
Training

After
Training

Magnitude

One-Shot

Gradient-

Based
Learned

Information-
Based

Iterative


https://roberttlange.github.io/posts/2020/06/lottery-ticket-hypothesis/
https://roberttlange.github.io/posts/2020/06/lottery-ticket-hypothesis/
https://roberttlange.github.io/posts/2020/06/lottery-ticket-hypothesis/

"Old-Fashioned"” Sparsity in Deep Neural Networks

AYA W W

:':"“0”' Training .g/ ‘o,'; \\9\\ Pruning Training ‘
P .9\ "‘. "* > ”. W) PHA ?« > > Trainable &
I ‘\v"«'\',fm 26‘\\ '6'//\' I’A
Aﬁ% X ,,“ " ) y«» /’.,:5. Well-performed
qv AVA WA !
Random NN Trained NNs Trained Sparse NNs

Pruning
01 Hanetal,ICLR'15
Training NOT 0f) Lietal,ICLR'16
> )
Trainable! 03 Frankleetal.,ICLR'19

Sparse NNs 04 Evcietal.,, ICML'19

o
o
o



Newer Solution: Lottery Ticket Hypothesis

A randomly-initialized, dense NN contins 2 subnetwork thaccan be
separately trained from initialization .« match the test accuracy ofthe
original NN after training for € M OSt the same number of iterations. erneetaicir

Dense Network Winning Ticket

WinWhat?

Prune p%
—> Maskm

f (o, mOW,)

f(x; Wh)



Newer Solution: Lottery Ticket Hypothesis

Win What? =
RW Trainable from the beginning

N Shorter training time & extremely sparse

Matched oreven better performance



Aslong as we know which

sparse sub-network is winning!




How to Find the Desired Sparse Model?

Iterative Magnitude Pruning

Init

[Frankle et al. 2019] @RobertTLange

How?

a) Randomlyinitialize a dense network

b) Trainitlike normal

c) Pruneunimportant weights

d) Resetremaining weight to their
values from a) exactly

e) Repeatb-d)iteratively



How to Find the Desired Sparse Model?

Iterative Magnitude Pruning

Prune

How?

d) Resetremaining weightto their
values from a) exactly

[Frankle et al. 2019] @RobertTLange



How to Find the Desired Sparse Model?

The Problem? X S Y

~——

Obtaining this good sparse mask is expensive...

m™ o Wy

Winning
. <
Tickets!

= Original Initialization

oze

=

How?

Randomlyinitialize a dense network
Train it like normal

Prune unimportant weights

Reset remaining weight to their
values from a) exactly

Repeat b-d) iteratively



Finding Mask is Expensive? Re-using a Pre-made Mask! @

/ Pre-training \




Finding Mask is Expensive? Re-using a Pre-made Mask! @

ﬂ’re-training \
O
Sty

Iterative

Pruning
_)
\ Dense Model Matching Subnetworky




Finding Mask is Expensive? Re-using a Pre-made Mask! @

Transfer Learning " '

ﬂ’re-training \
0
A

Iterative

Pruning
_)
\ Dense Model Matching Subnetwory




Finding Mask is Expensive? Re-using a Pre-made Mask! @

=

Transfer Learning

/Pre—training \
O
XA

Iterative

Pruning
_)

\ Dense Model Matching Subnetwory




Finding Mask is Expensive? Re-using a Pre-made Mask! @

Q: Can a “lottery” universally transfer to all downstream tasks the same well?
If yes, the extraordinary cost of finding sparse masks can be amortized by re-using

Transfer Learning

ﬂ’re-training \

N
Iterative
Pruning

— >

\ Dense Model Subnetwory

g - T
Classification

W Cat?
o

.

\

[Chen et al. NeurIPS'20, CVPR’'21, ICML"22]

MIT News

NNNNNNNNNNNNNNNNNNNNNNNNN £ SUBSCRIBE

Shrinking massive neural networks used to model
language

A new approach could lower computing costs and increase accessibility to
state-of-the-art natural language processing.

Daniel Ackerman | MIT News Office




IMP can find you a good mask on pre-trained
models (supervised or self-supervised), in NLP,

CV and even multi-modality, so the sparse
subnetworkis the same transferrable!

T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, M. Carbin, and Z. Wang, “The Lottery Tickets Hypothesis
for Supervised and Self-supervised Pre-training in Computer Vision Models”, CVPR 2021

T. Chen, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, and M. Carbin, “The Lottery Ticket Hypothesis
for Pre-trained BERT Networks”, NeurlPS 2020.




A New Promising Regime in the Era of Foundation Models

Instead of Dense Gigantic Pre-training

New Regime: Pre-training a Large Model

Finding its Sparse Lottery

Deploying and Transferring




Training Big NNs from scratch is Expensive,

Can Sparsity Help?

Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell

Ananya Ganesh

Andrew McCallum

College of Information and Computer Sciences
University of Massachusetts Amherst

{strubell, aganesh, mccallum}@cs.umass.edu

Common carbon footprint benchmarks

in Ibs of CO2 equivalent

Roundtrip flight b/w NY and SF (1

passenger) | 1,984
Human life (avg. 1 year) | 11,023
American life (avg. 1 year) Il z6.156
US car including fuel (avg. 1

lifetime) 126,000

Transformer (213M parameters)
w/ neural architecture search 626,155

Model Hardware = Power (W) Hours kWh-PUE COze Cloud compute cost
Transformerp,se P100x8 1415.78 12 27 26 $41-$140
Transformery;, ~ P100x8 1515.43 84 201 192  $289-$981

ELMo P100x3 517.66 336 275 262  $433-$1472

BERT} e V100x64 12,041.51 79 1507 1438 | $3751-$12,571
BERT} e TPUv2x16 - 96 - — | $2074-$6912

NAS P100x8 1515.43 274,120 656,347 | 626,155 || $942,973-$3,201,722
NAS TPUv2x1 — 32,623 — — | $44,055-$146,848
GPT-2 TPUv3x32 — 168 — — 1 $12,902-$43,008




Surprise - Good Sparsity Can be Found Early!

Progressive Pruning and Training

et e * Inthefirst 15-20% of total epochs, the

') “important” connection subset
B < already emerges and keeps stable!
B o) So,pruningcanhappenearly!

* Trainingan ”early emerging” sparse
NN is more efficient not in not only
resource, but also data

100% training
(train N epochs, e.g., N = 160)

EB Train (Proposed) Structured sparsity
. ) )
e > Validated on CNNs, BERT & ViTs

N N

hv-s v £ N
\ * H.You, C.LiP. Xu, Y. Fu, Y. Wang, X. Chen, R. Baraniuk, Z. Wang, and Y. Lin, “Drawing
6% - 20% training Early-Bird Tickets: Toward More Efficient Training of Deep Networks”, ICLR 2020
(train Nzg epochs, e.g., Ngp = 10) « X.Chen, Y. Cheng, S. Wang, Z. Gan, Z. Wang, and J. Liu, “EarlyBERT: Efficient BERT

Training via Early-Bird Lottery Tickets”, ACL 2021.



Lottery Ticket with Hardware Acceleration

Initial Unstructured Sparse Mask Algorlthm 3 IMP-Regroup

Input: f(x;m © 6;) with unstructured sparsity s from Al-
Remaining Weights gorithm 1, hyperparameters 1, t2, b1, and by
pruned Weights Output: f (m; 'm; ® 0;) with group-wise structural mask m
at sparsity s
1: while dense block can be found do
Grouping 2:  Divide the rows of the sparse pruning mask m into
t1 groups using hypergraph partitioning (hMETIS)“
3:  for group ¢; € {c1,¢c2,...,¢,} do
4: if c; has > b; rows then
Group-wise Structural Sparse Mask 5: Select columns in ¢; that has no less than to
non-zero items
6: if > b, columns are selected then
( (1) i (1) 8 8 8 8 8 \ N~ "2\ 7 Group and Refill the selected columns as well
00110100 7 —(ve as rows to a dense block, and update m
00011000 V5 8: end if
R
\00000011) 10: end for

11: end while
12: Set other elements out of dense blocks to 0

60%~65% wall-clock time savings on ImageNet. _
T. Chen, X. Chen, X. Ma, Y. Wang, and Z. Wang, “Coarsening the

Granularity: Towards Structurally Sparse Lottery Tickets”, ICML 2022



From One Mask to Many: Dynamic Sparse Training (DST)

(1) Sparsity
Distribution

Initialization

(2) Update
Schedule

>

Is Update
Iteration?

Sparse

Step

Training

no

yes

(3) Drop

(4) Grow

-

-

O

Figure 1: Dynamic sparse training changes connectivity during training to aid optimization.

Evci, Utku, Trevor Gale, Jacob Menick, Pablo
Samuel Castro, and Erich Elsen. "Rigging the
lottery: Making all tickets winners." ICML 2020

Source:
https://ai.googleblog.com/2020/09/improving-
sparse-training-with-rigl.html



https://ai.googleblog.com/2020/09/improving-sparse-training-with-rigl.html
https://ai.googleblog.com/2020/09/improving-sparse-training-with-rigl.html

In-Time Over-Parameterization (ITOP): Exploration is the Key

R =4/12 R =6/12 R =8/12 R =12/12

7

raln raln Train

N_explored_parameters

ITOP Rate: R =

N_total_parameters

Final Sparse Network

S. Liu, L. Yin, D. Mocanu, and M. Pechenizkiy. “Do we actually need dense over-
parameterization? in-time over-parameterization in sparse training”. ICML 2021



ITOP Hypothesis: The performance of sparse training is highly correlated with the

proportion of weights that have been explored.

Evaluation:

Test Accuracy %

80

78

76

74

72

95% sparse ResNet-34 on CIFAR-100

Number of Training Epoch [#]

—> ITOPR=1

—> Dense training

Looo o o o o o
Doo0oOoO O o o o o
TNt © O © N o o
% — — N m <
LI I I I I I I
n/~oo I~ o) o (=} o
SmeEs o - - — -
Oooo o o

n-Time Over-Parameterization Rate

+3.1%

> Naive sparse training R = 0.05

=

+5.0%



EfficientlyScaling with
DynamicSparsity:
Mixture of Experts (MoEs)

® B ]
\\ /‘ P
\’/ . \
9 ,
\ 4% l‘\\

1 1
1 f

4GOElayer
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— )
1 t G(x),| [6(x),4
[ aver ] ayer e
—

1
:

Shazeer M. et. al. “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts

) Ememcs.mm

Introducing Pathways: A next-
generation Al architecture

Oct 28, 2021 Too often, machine learning systems overspecialize at individual tasks, when they could €
5 min read we're building Pathways—a new Al architecture that will handle many tasks at once, learn

reflect a better understanding of the world.

o Jeff Dean
Google Senior Fellow and SVP, Google Research



Why MoE?

* MoE isaspecial type of sparsity (dynamic, structured, end-to-end)
* “Modalized” structure is naturally good for distributed training/parallelism
* “Block-level” sparsity is hardware-friendly
* “End-to-end” sparsity keeps the memory /compute low at any point of training

* MoE isalso aspecial type of dynamic inference
* Dynamically activate an “input-dependent” subnetwork for anew test sample
* The activation is controlled by a routing network (top-4classifier, RL, hashing...)

* MoE can be straightforwardly extended to “divide and conquer”...
* Multi-tasklearning
* Multi-modality learning



Dense versus Sparse MoE Transformer
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Schematic of Routing Network (using top-4 as example)

Expert Weights
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Router Weights - challenges remain
onrouting!

* Expertload balancing
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Sparsity Helps Robustness? Adversarial/Backdoor/Certified

Initial Sparse Model Overfitting
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* T.Chen, Z. Zhang, P. Wang, S. Balachandra, H. Ma, Z. Wang, and Z. Wang, “Sparsity
23 Winning Twice: Better Robust Generalization from More Efficient Training”, ICLR 2022.



Empirically All Appealing ... But Any Theory?

1. Approximation: e.g., whether there exists a sparse NN that approximates its dense
NN arbitrarily well (“stronger LTH", etc.)

* E. Malach et. al., “Proving the Lottery Ticket Hypothesis: Pruning is All You Need”, ICML 2020 (just one example, more...)

2. Optimization: e.g., whether asparse NN train slower than its dense NN, and if yes
how much slower. Also, why sparsity often naturally emerges in NN training?

* H.Yangand Z. Wang, “On the Neural Tangent Kernel Analysis of Randomly Pruned Wide Neural Networks”, AISTATS 2023

3.Generalization: e.g., doessparse NN generalize better than its dense NN in-
distribution, over distribution shifts, or with label noise

* H.Yang, .., Z. Wang, “Theoretical Characterization of How Neural Network Pruning Affects its Generalization”, arXiv 2023

4, Topology (weight-agnostic, often graph theory): e.g., what differentiates between a
good sparse mask and a bad one? How to characterize masks changing over time?

* D.Hoang, ..., Z. Wang, “Revisiting Pruning at Initialization Through the Lens of Ramanujan Graph”, ICLR 2023



Sparse Transfer: An NLP Example
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Sparse Transfer: An NLP Example

Sparsification
Weights | Wi |= Wi_q + AW
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Sparse Transfer: An NLP Example

Sparsification

W, = Wye_1 +|AW| Weight Updates

Dense

AW

"Diff Pruning”
[Guoetal. ACL'21]

Sparse



Sparse Transfer: An NLP Example

Sparsification

W, = Wye_1 +|AW| Weight Updates

Gigantic Model Tuning
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Sparse Transfer: An NLP Example

Sparsification

W, =W;e_4 + Weight Updates

GPT-2 Alliiralel s BLEU NIST
Parameters

Full Fine-tune 354.92 M .62
Adapters 1148 M 63.9 .71
Ours 0.39M 69.4 8.78

* X.Chen, T. Chen, Y. Cheng, W. Chen, Z. Wang, and A. Awadallah “DSEE: Dually
Sparsity-embedded Efficient Tuning of Pre-trained Language Models?”, ACL 2023



A LookInto the Future of Sparsity?

Now this 1s not the end. It 1s not

even the beginning of the end. But it T heo‘ry |
1S, perhaps, the end of the beginning. * Application

* System




A LookInto the Future of Sparsity?

Scaling the Universe from the macro to micro level in meters

Nucleus" A4
Galaxy scale 10

Atom io-12

Solar system Molecule
1073 Cell 10°

In the “ML model”
universe, sparsity will
have key roles at both
extreme ends:

- “Trimming down"
- "Scaling up”
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