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Basics: Why GAN and 
what it is?



Generative vs. Discriminative Models

• Given a distribution of inputs X and labels Y
• Discriminative: model the conditional distribution P(Y | X).
• Generative networks model the joint distribution P(X , Y).

• If the model understands the joint distribution P(X ,Y), then it
• can calculate P(Y | X) using Bayes rule
• can perform other tasks like P(X | Y), i.e., generating data from 

the label (called “conditional generation” in GANs)
• understands the distribution better than a discriminative model,

a scientific philosophy called “analysis by synthesis”

“The analysis of the patterns generated by the world in any modality, with all their naturally occurring complexity and 
ambiguity, with the goal of reconstructing the processes, objects and events that produced them” - David Mumford 



• Even if you only have X, you can still build a generative model
• … making generative modeling amendable to

unsupervised/semi-supervised representation learning
• Not every problem is discriminative, but all problems could

be generative!

• However, generative modeling is harder!
• Map from X to Y is typically many to one
• Map from Y to X is typically one to many
• Dimensionality of X typically >> dimensionality of Y
• Hence compared to estimating P(Y | X), the estimation of

P(X, Y) usually runs into the “curse of dimensionality”

Generative vs. Discriminative Models



Setup of Generative Models



Autoregressive Models



RNNs for Autoregressive Language Modeling



PixelRNN (van der 
Oord et al. 2016)

• Autoregressive RNN over pixels in an image

• Models pixel generation as discrete-value
classification (256-way softmax at each step)

• Problems:
• Sequential generation can be very slow
• Not even close to the “true” image

generating process



Autoencoders for Representation Learning

Idea: extending compression to implicit generative modeling, which allows for sampling!



Variational Autoencoders (VAEs)
• Similar to a typical autoencoder, but allowing for sampling!

• Goal: generative model of P (X)
• Loss function: reconstruct inputs X (in probabilistic sense)
• Encoder models P(Z | X)
• Decoder models P(X | Z)

• Hidden representation Z is to be learned by the model
• We encourage the marginal distribution over Z to match a prior 

Q(Z) (needs to be pre-chosen)
• During training: generated by encoder
• During testing: sampled from Q(Z), assuming EX P(Z | X) ≈ Q(Z)

• Algorithm: maximizing log P(X)
-> maximizing its evidence lower bound (ELBO)
• can also be re-expressed as minimizing KL(Q(Z) || P(Z | X))
• VAEs require an analytical understanding of the prior Q(Z)



VAE Results

Problems:

• Encoder and decoder’s output 
distributions are typically
limited (diagonal-covariance 
Gaussian or similar)

• This prevents the model from 
capturing fine details and leads
to blurry generations



GANs: NEW WORLD
of generative models

GAN (generative adversarial network)
= two competing modules:
G (generator) + D (discriminator)





Conceptual Diagram
of GANs

Quick Notes:

• Same goal: model P(X) !
• G learns P(X | Z)
• Challenge: no simple loss function
available to measure the divergence
• Solution: learning it, using D !
• From the perspective of the G, D

is like an adaptive loss function
• In most applications, D is an

auxiliary and thrown away after
training; only G is wanted



GANs versus VAEs

• GANs minimize the divergence between the 
generated distribution and an unknown
target distribution, in an actor-critic fashion

• Noisy, difficult and notoriously unstable
optimization

• GANs only require the “black box” ability to 
sample from a prior

• GANs produce ”sharper“ results while VAE
results are often blurry

• VAEs minimize a bound on the divergence 
between the generated distribution and a pre-
specified target distribution

• Faster, reliable and theoretically justified
optimization

• VAEs needs know the prior form as “white box”

• VAEs learn an encoder-decoder pair but GANs do 
not (or only decoder…)



GANs are Implicit 
Probabilistic Models 

• Generator implicitly learns a target distribution
P(X), but has no explicit specification of the 
density function, which is different from VAEs

• Generator models P(X | Z), and the implicitly
learned distribution is defined naturally in 
terms of a sampling procedure: sampling from 
P(X) by drawing samples from P(Z) as input
• If Z is a random noise: noise-to-image GAN
• If Z is another natural image: image-to-image GAN

• It is not easy to marginalize over all Z and to
calculate EZ P(X | Z) explicitly
• If you really want the explicit likelihood estimation:

Bayesian GAN (extra MC sampling), flow-GAN
(flow-based generator), etc.



From Unsupervised to Supervised:
Conditional GAN and Beyond



The Optimization 
Problem of GANs



Formulation: Min-Max Game



Min-Max Optimal Discriminator



Min-Max Optimal Discriminator



What does the optimal discriminator look like?



Jensen-Shannon Divergence
• The optimal discriminator will minimize the Jensen-Shannon divergence between the 

real and generated distributions
• JS divergence is the averaged KL between A / B and their “averaged distribution”
• This is called “virtual training criterion”, minimized if and only if PD = PG

• PD = PG makes a minimax stationary point!
• If the generated data exactly matches the real data, D should output 0.5 for all inputs. 
• If D outputs 0.5 for all inputs, the gradient to the generator is flat, so the generated distribution has 

no reason to change.

Remark:
An optimally trained D just 
calculates the JS divergence
… but a real D calculates something 
much more complicated, e.g.,
“perceptual distance”…



Stationary point might not be stable point

• The “optimal” GAN solution might be difficult to reach, but easy to slip away …

• If the generated data is near the real, the discriminator outputs might be arbitrarily large
• Even when real data and generated data are separated by some minimal distance, a discriminator with 

unlimited capacity can still assign an arbitrarily large distance between these distributions.
• Motivating: gradient penalty, Lipchitz constraint, Wasserstein loss … (later this talk)

• Generator may “overshoot” some values or “oscillate” around an optimum – a notorious
behavior in minimax optimization
• Whether those oscillations converge or not depends on training details
• GAN training can be very sensitive to hyperparameters



Challenge of Minimax Optimization

• The hard part is that both generator and discriminator need to be trained simultaneously to
hit “moving targets"
• Ideally: assuming optimal discriminator at any time
• Practically: never going to happen!
• If the discriminator is under-trained, it provides incorrect information to the generator
• If the discriminator is over-trained, there is nothing local that a generator can do to marginally improve
• The correct discriminator changes during training

• Significant research on techniques, tricks, modifications, etc. to help stabilize training

• Our recent work: solve minimax optimization using meta learning/learning to optimize



How to Train GANs: 
An Odyssey 



GAN training: Scaling up & Stabilizing

a) Controlling gradient & Improving loss smoothness
b) Breaking end-to-end learning into progressive training
c) Finding better architectures
d) Other improved techniques and tricks

• Backbone algorithm: gradient ascent & descent
• Often combining many techniques to work well
• As of now, no silver-bullet to kill all training
• Getting better every year



Gradient & Loss Smoothness (1)

• Gradient descent GAN optimization is locally stable (2017)

• Gradient of the discriminator is how fast discriminator can improve
• If generator makes improvement, but discriminator gradient is large, 

discriminator can undo that improvement by minimax



Gradient & Loss Smoothness (2)

• Deep Regret Analytic Generative Adversarial Networks (2017)

• New penalty to minimize the norm of the gradient in a region around real data
• That makes a function smoother

• Smoothening in a random region around real data to smooth the discriminator



Gradient & Loss Smoothness (3)

• Energy-based GAN/Hinge Loss (2017)

• Simplify the loss function, removing powers and exponents
• No longer easily described using JS divergence or something similar
• Gradients are neither squashed nor exploding



Gradient & Loss Smoothness (4)

• Wasserstein GAN (2017)
K-L Divergence:

Why yet another
new loss?



Gradient & Loss Smoothness (4)

• Wasserstein GAN (2017)
JS Divergence:

Why yet another
new loss?



Gradient & Loss Smoothness (4)

• Wasserstein GAN (2017) Wasserstein Distance:

Why yet another
new loss?



Gradient & Loss Smoothness (4)
• In general: Wasserstein metric provides a smooth 

measure, that stabilizes gradient descent

• Intractable -> Using Kantorovich-Rubinstein duality:

• Further simplified and theoretically grounded.
• Calculating using a dual method needs constrain the Lipschitz of discriminator

• Initially, clipping weights to some value -> but often leading to poor discriminators



Gradient & Loss Smoothness (5)

• Wasserstein GAN + Gradient Penalty (2017)

• Property: A differentiable function is 1-Lipschtiz if and only if it 
has gradients with norm at most 1 everywhere

• Propose a better alternative of constraining the Lipschitz
• Scale up WGAN to much deeper G, e.g., ResNet-101

• Spectral Normalization GAN (2018)
• Lipschitz of an MLP can be upper bounded by product of each 

layer’s spectral norm
• … and each layer’s Lipschitz approximated by power iteration



Progressive Training
• Laplacian GAN (2014)

• The first GAN block generates small, blurry image
• … following by conditional GAN blocks, sharpening and enlarging image slightly
• Repeat until desired size. Training is simplified/more stable.

• Progressive GAN (2017)

• Gradually add layers to generator 
and discriminator to produce
larger images

• Always keep the two “balanced”



Finding better architectures

• “….most existing models reach similar scores with enough 
hyperparameter optimization and random restarts.”

“Are GANs Created Equal? A 
Large-Scale Study”, NeurIPS’18

• “…most of the variations applied in the ResNet style 
architectures lead to marginal improvements in the sample 
quality.”

“A Large-Scale Study on 
Regularization and 

Normalization in GANs”, ICML’19

• AutoML could help!

AutoGAN (ICCV 2019)
Our (Humble) Argument: the
backbone structure matters for

GANs too!



Other improved techniques and tricks (1)

• Feature Matching (2016)
• Intuition: High-dimensional statistics of generated images should match statistics of real images
• Discriminator produces multidimensional output, a “statistic” of the data, that should be more

stable than scalar-value output (yes or no)
• Generator trained to minimize L2 between real and generated data
• Discriminator trained to maximize L2 between real and generated data

• Minibatch Discrimination (2016)
• Discriminator can look at multiple inputs at once and decide if those inputs come from the real or 

generated distribution
• More confident and less noisy than once per time
• If not, GANs can collapse to a single point



Other improved techniques and tricks (2)

• Historical Weight Averaging (2016)
• Dampen oscillations by encouraging updates to converge to a mean
• Add a decay term that encourages the current parameters to be near a moving average:

• One-sided label smoothing (2016)
• Label smoothing is a common technique to avoid over-confident predictions/overfitting
• Smoothening for real targets but not the generated, when training the discriminator

• Virtual Batch Normalization (2016)
• Batch normalization accelerates convergence, but hard to apply in GANs
• VBN collects statistics on a fixed batch of real data and use to normalize other data



How to Evaluate GANs?



GAN Evaluation is HARD

• The task of generating realistic-looking images is not as easily
quantified as a task like correctly labeling images

• The generator’s learned distribution is implicit, and we cannot 
easily/directly calculate the likelihood of a test set

• So How?
• Human Evaluation
• Sampling-based Proxy Methods



Human Evaluation
• The most direct answer to the question of whether generated 

data is “realistic-looking"
• Expensive, time consuming, and maybe not reproducible
• But perhaps the only way to claim “groundtruth”

“HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models”, NeurIPS 2019



Sampling-based proxy methods

• Quality of generated images: Inception score (IS)
• Cannot reflect the population-level generation quality, e.g., the overfitting and loss of 

diversity
• requires pre-trained perceptual models on specific datasets

• Diversity of generated images: Fréchet Inception Distance (FID)
• Models the distribution of image features as multivariate Gaussian distribution and computes 

the distance between the distribution of real and fakes images.
• FID can detect inter-class mode dropping.
• But multivariate Gaussian distribution assumption does not hold well on real images, limiting 

FID’s trustworthiness.



Sampling-based proxy methods

• More Fine-Grained Metrics:
• Birthday paradox test (detecting severe mode drop)
• Classification-based metrics (quantifying inter-class mode dropping)
• Black-box diagnosis (detecting intra-class mode collapse)

• Many Aspects remain untouched yet:
• Novelty of generated images?

• Are GANs really “memorizing” or “creating”, and to what extent?

• Subtle co-variate shifts
• Privacy, fairness, etc.



An Application Tour of GANs



CycleGAN: Unpaired Image Translation

Given two image collections, CycleGAN learns to translate an image from one 
collection to the other, without requiring correspondence between images





GAN for Super Resolution: SRGAN/ESRGAN



DeOldify: GAN based Image Colorization



Image Enhancement: EnlightenGAN

Now a standard plugin of Python GIMP toolbox, etc.



Deblurring

Underwater Enhancement



Font Style Transfer and Animation



Interactive Image Editing using Sketching



Synthetic Data Generation

CVPR 2017 Best Paper, “Learning from Simulated and 
Unsupervised Images through Adversarial Training ”

ACM MM 2020, “MM-Hand: 3D-Aware Multi-Modal Guided 
Hand Generative Network for 3D Hand Pose Synthesis”



”DeepFake”
- A person in an existing image or video is replaced 
with someone else‘s likeness, usually by GAN
(sometimes autoencoders)

https://github.com/deepfakes/faceswap

https://github.com/deepfakes/faceswap


GAN Compression for Mobile APPs



Semi-supervised Learning



GAN can be the “new” image prior too!

Slides credits: Alex Dimakis



GAN can be the “new” image prior too!

Slides credits: Alex Dimakis



GAN can be the “new” image prior too!

Slides credits: Alex Dimakis



Data-efficient training of GAN

● Not every domain has unlimited real images!
○ imaging expense, subject type, image quality, privacy, copyright status…

● A few recent attempts differentiable or adaptive data augmentation to 
significantly improve GAN training in limited data regimes
○ Zhao, S., Liu, Z., Lin, J., Zhu, J.-Y., and Han, S. Differentiable augmentation for data-efficient GAN training. NeurIPS, 

2020.
○ Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., and Aila, T. Training generative adversarial networks with 

limited data. NeurIPS, 2020

● Our contribution is orthogonal: leveraging the existence of sparse
substructure (a.k.a. “lottery ticket hypothesis”) as inductive prior
○ Chen, T., Cheng, Y., Gan, Z., Liu, J., & Wang, Z. (2021). Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, 

Then Training It Toughly. arXiv preprint arXiv:2103.00397.



Few-Shot
Generation



Emerging non-image applications

Text-to-Speech 
(TTS)

Program Synthesis and RL



Summary & Take-
Home Messages

• Good: GANs can produce awesome, 
crisp results for many problems

• Bad: GANs have stability issues and 
many open theoretical questions

• Ugly: Many ad-hoc tricks and 
modifications to get GANs to work 
correctly

The Rising Field Welcomes YOU!




