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Why Synthetic Training

= Collections of real data are costly
= Massive real image

= Classification / Segmentation / Detection

= Synthetic data are relatively cheap to generate

Cityscapes (3K annotations) GTA5 (24,966 annotations) 2 < NVIDIA.



Why Synthetic Training

In some cases, synthetic data is all you have...

EyeGaze / Depth / Flow /3D Mesh reconstruction / Robotics

[ JOX ) -| female_01.blend

Example Navigation by Trained Agents

Wood et al. ICCV 2015 Habitat (Facebook)
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Synthetic Simulation Empowers Some Most
Important Applications

= Autonomous Driving: Omniverse, ISAAC, DRIVE Sim, etc.

Real

ISAAC platform DRIVE Sim

4 <A NVIDIA.
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Synthetic Simulation Empowers Some Most
Important Applications

= Medical Image Analysis: cover more corner cases, resolve privacy concerns...

Generator

Semantic Map
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Challenging Domain Gap: Synthetic vs Real
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Domain Randomization (IROS’17)

= To handle the variability in real-world data, the simulator parameters
(lighting, pose, object textures, etc) are randomized in non-realistic ways to
force the learning of essential diverse features.

8 <X NVIDIA.



Can We Do Better than Random?

= Learn to simulate better data for a particular downstream task?

= Learn to simulate edge cases?
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Learning to Simulate (ICLR’19)

> We want to solve the following bi-level optimization problem. Loss of main task model
_ trained in simulation and

-

.~ evaluated on real data

/

Simulation parameters

o N
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Learning to Simulate (ICLR’19)

= Train the policy of selecting simulator parameters, using policy gradient,
since the simulator is often non-differentiable

reward R

Main Task
Simulator Net ”
parameters © training dataset Sl

sampled from

Q(x,y|0©)

-~
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Are better simulators enough?
Models overfit to any difference High quality is expensive

Virtual KITTI Dataset

Multi-object tracking accuracy: Jungle Book:

Sim: 63.7% 30M render hours

Real: 78.1% 19 hours per frame
Virtual Worlds as Proxy for Multi-Object Tracking Analysis 800 artlst-years of effort
[Gaidon*, Wang*, Cabon, Vig, 2016] Jungle Book, 2016

Slides Credits: Josh Tobin 12 <X NVIDIA.



Supervised domain adaptation
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Learning Omnidirectional Path Following Using Dimensionality
Reduction [Kolter, Ng, 2003]

Efficient Reinforcement Learning for Robotics using Informative
Simulated Priors [Cutler, How, 2015]

Sim-to-Real Robot Learning from Pixels with Progressive Nets [Rusu
et al. 2016]

Deep Predictive Policy Training using Reinforcement Learning
[Ghadirzadeh, Maki, Kragic, Bjorkman, 2017]

Iterative learning control

Low-Fidelity P | ane ‘,'_: “.
and/or Cost }— o b
X b 2

f

Exploration heuristics

e Ty Ay

Learned (certain) model parameters

—

-

Using inaccurate models in reinforcement learning [Abbeel,
Quigley, Ng, 2006]

Reinforcement learning with multi-fidelity simulators [Cutler,
Walsh, How 2014]

Superhuman performance of surgical tasks by robots using
iterative learning from human-guided demonstrations [Van Den
Berg, Miller, Duckworth, Hu, Wan, Fu, Goldberg, Abbeel, 2010]

Slides Credits: Josh Tobin 13 <4 NVIDIA.



(Less) supervised domain adaptation

Weakly Supervised Self-Supervised Unsupervised

- L
A iatli . Pixel accuracy on target

Source-only: 54.0%
Adapted (ours): 83.6%

Seurce im Iee TAS) Target image (OtyScapes)

Accuracy on target
/ 3 O ( { Source-only.:  67.1%
Adapted (ours): 90,4%

Source images (SVHN Adapted wource images (Owry)

(b) Synthetic Images

() Synthetic images Adapted with our Approach

(c) Real Images

5> bl

Adapting Deep Visuomotor Representations A Self-supervised Learning System CyCADA [Hoffman, Tzeng, Park, Zhu,
with Weak Pairwise Constraints [Tzeng, Devin, for Object Detection using Isola, Saenko, Efros, Darrel, 2017]
Hoffman, Finn, Abbeel, Levine, Saenko, Darrell, Physics Simulation and Multi-view Using Simulation and Domain
2016] Pose Estimation [Mitash, Bekris, Adaptation to Improve

Boularias, 2017] Efficiency of Deep Robotic Grasping

[Bousmalis et al., 2017]

Slides Credits: Josh Tobin 14 <4 NVIDIA.
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Wuyang Chen, Zhiding Yu, Zhangyang “Atlas” Wang, Anima Anandkumar



Previous solutions:

1) Early stopping

Heuristic Hand-tuning

l
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ImageNet as Proxy Guidance

= Why early stopping?

= Keep weights close to ImageNet initialization.

» We minimize Lg;: new model vs ImageNet initialization

= ImageNet as proxy guidance in syn2real training.
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ImageNet as Proxy Guidance

= Why early stopping?

= Keep weights close to ImageNet initialization.

» We minimize Lg;: new model vs ImageNet initialization

= ImageNet as proxy guidance in syn2real training.
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L20: automatic control of layer-wise learning rate

= Why small learning rate?

= Keep weights close to ImageNet initialization.

= But how small for which layer?

= L20 (learning-to-optimize): automatic control of layer-wise learning rate
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NVIDIA.



Automated Synthetic-to-Real Generalization (ASG)

= Why small learning rate?

= Keep weights close to ImageNet initialization

= But how small for which layer?

= L20 (learning-to-optimize): automatic control of layer-wise learning rate
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Action Behavior of RL-L20 Policy

» Backbone (ImageNet pretrained): closer to L,; > smaller LR

» Projection head: large LR

................................ 10
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FCN-Vgg16 21 <A NVIDIA.



Why ASG Works? Retaining ImageNet Information

Model

# Visda-17 ImageNet
1. Large LR for all layers 28.2 0.8

2. + our Proxy Guidance 58.7 (+30.5) 76.2 (+75.4)

Small LR for backbone

3 and large LR for FC 49.3 33.1

4. + our Proxy Guidance 60.2 (+10.9) 76.5 (+43.4)
5. Oracle on ImageN et’ 53.3 (+4.0) 77.4

6. ROAD (Chenetal., 2018) 57.1 (+7.8) 77.4

7. Vanilla L2 distance 56.4 (+7.1) 49.1

8. SI (Zenke et al., 2017) 57.6 (+8.3) 53.9

9. ASG (ours) 61.5 76.7

22 < NVIDIA.



ASG Benefits Domain Adaptation & Self-Training

= ASG serves as better initialization DISTRIBUTIONALLY ROBUST LEARNING FOR UNSU-

o PERVISED DOMAIN ADAPTATION
1. ImageNet = Self-training for DA

Haoxuan Wang * Angqi Liu * Zhiding Yu
Shanghai Jiao Tong University  Caltech NVIDIA

2. ImageNet 9 ASG 9 Self-training for DA hatch25@sjtu.edu.cn angiliu@caltech.edu zhidingy@nvidia.com

Yisong Yue Anima Anandkumar
Caltech Caltech & NVIDIA
Method Tgt Img Accuracy yyuel@caltech.edu anima@caltech.edu
aanandkumar@nvidia.com
Source-Res101 (Zou et al., 2019) X 51.6
CBST (Zou et al., 2018) / 76.4 (0.9) 5 st“‘i’dl a— 1\5426111
MRKLD (Zou et al., 2019) v/ 77.9 (0.5) VMD (et 0TS | o1
ADR (Saito et al.lj2013a) 74.8
ASG (ours) X 61.5 CBST (Zou et al.|[2020} 76.4
ASG + CBST 4 82.5 (0.7) CRST (Zou et al.| 2020} 78.1
ASG + MRKLD v 84.6 (0.4) AVH (Chen et al.|[2020a} 81.5
ASG + MRKLD + LRENT / 84.5 (0.4) DKST (proposed) 83.75
ASG (Chen et al.}[2020b} 61.17
CBST-ASG (Chen et al.[]2020b) || 82.23
CRST-ASG (Chen et al.. 2020b) || 84.21
DRST-ASG (proposed) 85.25

NVIDIA.
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Deeper Look Into Domain Gap

= Synthetic images leads to collapsed feature space!
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concentrated features. E's: hyperspherical energy of features, lower the more diverse.

Hyperspherical Energy (HSE, E.)
Low E, =» diverse features
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(c) Trained on VisDA-17 training
set (synthetic). (Es = 0.4542)

Figure 2: Feature diversity in R? with Gaussian kernel density estimation (KDE). Darker areas have more

25 <A NVIDIA.



ImageNet Distillation + Feature Diversity

= Synthetic-to-real with a “push and pull” strategy
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Contrastive Loss
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Attention-guided Global Pooling
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Results: Feature Diversity vs Generalization

= Model preserves diverse features =» generalize better on real domain

Table 1: Generalization performance and hyperspherical energy of the features extracted by different models

(lower 1s better). Dataset: VisDA-17 ( | ) validation set. Model: ResNet-101.
Model Power Accuracy (%)
0 1 2

Oracle on ImageNet" - - - 53.3

Baseline (vanilla synthetic training) 0.4245 1.2500 1.6028 49.3

Weight [2 distance ( , ) 04014 1.2296 1.5302 56.4
Synaptic Intelligence ( , ) 0.3958 1.2261 1.5216 57.6

Feature [2 distance ( | ) 0.3337 1.1910 1.4449 57.1

ASG ( , ) 0.3251 1.1840 1.4229 61.1
CSG (Ours) 0.3188 1.1806 1.4177 64.05

NVIDIA.



Results: Segmentation

person rider car train motorcycle bike

u G T A5 9 C'i tySC a pes building wall | traffic Igt trafﬁ sgn ignored

Table S: Comparison to prior domain generaliz g

Methods

No Adapt
IBN-Net (Fan et al, 2018

No Adapt
Yue et al. (Yue et al., 201!

No Adapt
ASG (Chen et al., 2020b

No Adapt
CSG (ours)

No Adapt
Yueet al. Yueetal.,201', ...

No Adapt ResNet-101 27.94
ASG (Chen et al., 2020b) 32.79

No Adapt 28.94
CSG (ours) 38.88

30 <A NVIDIA.



Future Works

= More applications: Gaze, Detection, Robotics, etc.
= Joint training with domain adaptation.

= Better leveraging multiple sources

= labeled real domain (ImageNet)
= labeled synthetic domain

= Unlabeled target real domain

NVIDIA.
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