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Supervised Learning

4 p
Feature Space X Label Space Y
Goal:Construct a predictor f : X — Y to minimize

_ R(f) = Exy [loss(Y, f(X))] y

Optimal predictor (Bayes Rule) depends on unknown P, so instead

iid

e ML has been largely focused
on this ...

- But Lots of other problem
settings are coming up:

(@)

(@)

(@)

learn a good prediction rule from training data {(X;,Y;)}i—1 ~ Pxy(unknown)

What if we also have unlabeled data?
What if we only have unlabeled data?

What if we have poor-quality labels
(e.g., coarse or potentially mistaken?)

What if we have many datasets, but
one somehow differing from another?

What if we only have one example, or
a few per (new) class?



And wait, there are more!

* Transfer Learning

. Semi-supervised learning "Seting | Source | Target | Siype.

« One/Few-shot |eaming Semi-supervised Single Single None

] ] labeled unlabeled
« Un/Self-Supervised Learning Domain Single Single Non-
e Domain adaptation Adaptation labeled unlabeled semantic
, : Domain Multiple Unknown Non-
Meta'Leammg Generalization labeled semantic
» Zero-shot Iearning Cross-Task Single Single Semantic
. . . Transfer labeled label
« Continual / Lifelong-learning , uniabeled
. . Few-Shot Single Single few-  Semantic
* Multi-modal learning Learning labeled labeled
* Multi-task learning Un/Self- Single Many labeled  Both/Task
Supervised unlabeled

« Active learning



Particularly Meaningful for CV ...

“Crystal” “Needle” “Empty”

Human expert/ "Sports”
Special equipment/ "News”
Experiment Science
Unlabeled data, X; Labeled data, Y

Cheap and abundant ! Expensive and scarce |



Particularly Meaningful for CV ...

image-level labels points bounding boxes scribbles pixel-level labels

1s/class 2.4s/instance 10s/instance 17s/instance 78s/instance

Annotation time



Particularly Meaningful for CV ...




A Whole Big Field! We try to cover a few ...

* Semi-Supervised and Weakly-Supervised Learning
* Few-Shot Learning

* Active Learning

* Transfer and Multi-Task Learning

e Self-Supervised Learning



Problem settings in a nutshell

PN learning PN ' learning
(i.e., supervised learning) (i.e., semi-supervised learning)
O O
X X
O © O ©
O X X o) X Ox
X X
O O
x X
P& Ndata are PN & ' 'data are
available for training available for training

O : positive data X : negative data

P learning
O

O

O
O

P& | data are

available for training



What is Semi-Supervised Learning?

Supervised Learning

(Jl,y) ™~ p(il?,y)

data (image)

o Training data: both labeled data
(image, label) and Unlabeled

max E. .. ....nloen(ulx)l o Goal: Use unlabeled data to

Cognitive science

Semi-Su Computational model of how humans learn from labeled and unlabeled

data.
Dy @ concept learning in children: x=animal, y=concept (e.g., dog)

@ Daddy points to a brown animal and says “dog!”

@ Children also observe animals by themselves

ng

led
er



An Incomplete List of Methods ...

Confidence & Entropy — “no matter what, be confident”
Pseudo Labeling
Entropy minimization
- Virtual Adversarial Training

Label Consistency — “label is robust to perturbations”
Pseudo Labeling
By applying different sample augmentations
Temporal Ensembling, Mean Teacher ...

Regularization
- Weight decay, Dropout ...
Strong/unsupervised data augmentation: MixUp, CutOut, MixMatch ...

Co-Training / Self-Training / Pseudo Labeling / Noisy Student



Pseudo Labeling

Pseudo-Label : The Simple and Efficient Semi-Supervised Learning
Method for Deep Neural Networks

Dong-Hyun Lee

SAYIT7T8@GMAIL.COM

Nangman Computing, 117D Garden five Tools, Munjeong-dong Songpa-gu. Seoul. Korea
=1 o o . o

Abstract

We propose the simple and efficient method
of semi-supervised learning for deep neural
networks. Basically, the proposed network is
trained in a supervised fashion with labeled
and unlabeled data simultaneously. For un-
labeled data, Pseudo-Labels, just picking up
the class which has the maximum predicted
probability, are used as if they were true la-
bels. This is in effect equivalent to Entropy
Regularization. 1t favors a low-density sepa-
ration between classes, a commonly assumed
prior for semi-supervised learning. With De-
noising Auto-Encoder and Dropout, this sim-
ple method outperforms conventional meth-
ods for semi-supervised learning with very
small labeled data on the MNIST handwrit-
ten digit dataset.

and unsupervised tasks using same neural network
simultaneously. In (Ranzato et al., 2008), the weights
of each layer are trained by minimizing the combined
loss function of an autoencoder and a classifier. In
(Larochelle et al., 2008), Discriminative Restricted
Boltzmann Machines model the joint distribution
of an input vector and the target class. In (Weston
et al., 2008), the weights of all layers are trained by
minimizing the combined loss function of a global
supervised task and a Semi-Supervised Embedding as
a regularizer.

In this article we propose the simpler way of training
neural network in a semi-supervised fashion. Basically,
the proposed network is trained in a supervised fash-
ion with labeled and unlabeled data simultaneously.
For unlabeled data, Pseudo-Labels, just picking up the
class which has the maximum predicted probability
every weights update. are used as if they were true la-

e Simple idea:
* Train on labeled data
« Make predictions on unlabeled data
» Pick confident predictions, and add
to training data
» Can do end-to-end (no need to
separate stages)

e Issues:

e “Under-confidence” or flatness —
“sharpening” by entropy
minimization

e “Overconfidence’? — Need better
uncertainty quantification



Label Consistency with Data Augmentations

Make sure that the logits are similar



More Data Augmentations -> Regularization

(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering



MixMatch: A Holistic Approach for Semi-

Supervised Learning

' h
Unlabeled\ &x —»[ Classify ] i S G

A ~ Beta(a, a)

N = max(\, 1 —\)
=N+ (1 - X))z
p'=ANp1+(1—=X)ps

MixUp

\
.. K augmentations ... Jii > ﬂH | v mmll

mv

Algorithm 1 MixMatch takes a batch of labeled data X" and a batch of unlabeled data Z/ and produces
a collection X’ (resp. U’) of processed labeled examples (resp. unlabeled with guessed labels).

1: Input: Batch of labeled examples and their one-hot labels X = ((xs,p5);b € (1,...,B)), batch of

unlabeled examples U = (ub; biE (s - 5 B)) , sharpening temperature 7", number of augmentations K,
Beta distribution parameter « for MixUp.

2: for b =1to B do

3: Zp = Augment(xs) Apply data augmentation to xy

4: fork=1to K do

5 Up,r, = Augment(uyp) Apply k' round of data augmentation to uy

6:  end for

7 b = % Zk Pmodel (Y | Up,k; 6) / Compute average predictions across all augmentations of uy
8 q» = Sharpen(gp, T) Apply temperature sharpening to the average prediction (see eq. (7))

9: end for
10: X = ((ib,pb); be (X;.::; B)) Augmented labeled examples and their labels
11: U = ((@k,q);b € (1,...,B), ke (1,...,K))
12: W= Shufﬂe(Concat(/?,I;{)) /| Combine and shuffle labeled and unlabeled data
13: X' = (MixUp(&X;, Ws);i € (1,...,|X]))
14: U’ = (MixUp(Us, W, 2))ii € (1,..., |U]))
15: return X', U’

Augmented unlabeled examples, guessed labels

Apply MixUp to labeled data and entries from VYV
Apply MixUp to unlabeled data and the rest of VV




“Co-Training’

Assumptions
o feature split z = [z(1); 2(?)] exists

o z(1) or 2(2) alone is sufficient to train a good classifier




“Co-Training’

e (Blum & Mitchell, 1998) (Mitchell, 1999) assumes that
e features can be split into two sets;
* each sub-feature set is sufficient to train a good classifier.

* |nitially two separate classifiers are trained with the labeled data, on the two sub-feature sets
respectively.

» Each classifier then classifies the unlabeled data, and “teaches” the other classifier with the
few unlabeled examples (and the predicted labels) they feel most confident.

 Each classifier is retrained with the additional training examples given by the other classifier,
and the process repeats.



“Co-Training’

Input: labeled data {(x;,¥;)};—;, unlabeled data {'xj‘}{;:l’“+1
each instance has two views x; = [xgl).xz(?)],
and a learning speed £.
1. let L1 = Ly = {(Xl ‘yl), Ce e (Xl, yl)}
2. Repeat until unlabeled data is used up:
8. Train view-1 (1) from Ly, view-2 f) from L.
4. Classify unlabeled data with (1) and f(2) separately.
5. Add f()'s top k most-confident predictions (x. f(1)(x)) to L.

Add f®)'s top k most-confident predictions (x. f(?)(x)) to L;.
Remove these from the unlabeled data.



“Noisy Student”

Require: Labeled images {(x1,v1), (x2,¥2), .-, (Tn,yn)} and

unlabeled images {Z1, 2, ..., Tm }-
: Learn teacher model 6, which minimizes the cross entropy
loss on labeled images

LS s, S 1,0))

=1

: Use an unnoised teacher model to generate soft or hard
pseudo labels for unlabeled images

Ji = f(%:,04),Vi=1,--- ,'m

: Learn student model 6/, which minimizes the cross entropy
loss on labeled images and unlabeled images with noise
added to the student model

1 ~ . pnoised/, . i - ~ penoised/~ p/
ngﬁ(yz,f (2:,0')) + m;ﬁ(yz,f (8:,0))

. Iterative training: Use the student as a teacher and go back to
step 2.

Method | # Params Extra Data | Top-1Acc. Top-5 Acc.
ResNet-50 [23] 26M - 76.0% 93.0%
ResNet-152 [23] 60M - 77.8% 93.8%
DenseNet-264 [25] 34M - 77.9% 93.9%
Inception-v3 [67] 24M - 78.8% 94.4%
Xception [11] 23M - 79.0% 94.5%
Inception-v4 [65] 48M - 80.0% 95.0%
Inception-resnet-v2 [65] 56M - 80.1% 95.1%
ResNeXt-101 [75] 84M - 80.9% 95.6%
PolyNet [£3] 92M - 81.3% 95.8%
SENet [27] 146M - 82.7% 96.2%
NASNet-A [£6] 8OM - 82.7% 96.2%
AmoebaNet-A [54] 87M - 82.8% 96.1%
PNASNet [39] 86M - 82.9% 96.2%
AmoebaNet-C [13] 155M - 83.5% 96.5%
GPipe [30] 557TM - 84.3% 97.0%
EfficientNet-B7 [69] 66M - 85.0% 97.2%
EfficientNet-L2 [69] 480M - 85.5% 97.5%
ResNet-50 Billion-scale [76] 26M 81.2% 96.0%
ResNeXt-101 Billion-scale [76] 193M . . 84.8% -
ResNeXt-101 WSL [44] gogm OB imageslabeled with tags | g5 4, 97.6%
FixRes ResNeXt-101 WSL [71] 829M 86.4% 98.0%
Noisy Student (L2) | 480M 300M unlabeled images | 87.4% 98.2%




Weakly-supervised Learning

Weak Supervision: (or
required outputs at the testing stage.
* The most prominent example in CV: Segmentation!!!
* Will be discussed in the later “Special Topic”

) ) annotations at training stage than the

image-level labels points bounding boxes scribbles pixel-level labels

horse person

pirson

’. ‘ ol Yi-
e ) S

Training Stage (Weakly-supervised Annotations) Testing Stage



Few-Shot Learning

| People are
- good at it

Human-level concept learning
through probabilistic
program induction

Brenden M. Lake,'* Ruslan Salakhutdinov,” Joshua B. Tenenbaum®

Machines are

o getting
better at it
€9 |9 [PV D [E3
T [T o dy
T (9 |3 @
S (oD (e) | D e




Normal Approach?

Do what we always do: Fine-tuning
— Train classifier on base classes

Training stage

Base class data COI‘IS?

Feature

extractor Classifier 1  The training we do on the base

classes does not factor the task into
account
— Freeze features * No notion that we will be performing a
— Learn classifier weights for new classes using bunch of N-way tests
few amounts of labeled data (during “query” < ldea: simulate what we will see during
time'! Fine-tuning stage test time — and can do that many times!
NOVEI(ESMS, dat Fiz(ticrle Classifier

extractor 2 9>>7TF :

A Closer Look at Few-shot Classification, Wei-Yu Chen, Yen-Cheng Liu,
Zsolt Kira, Yu-Chiang Frank Wang, Jia-BinHuang



Meta Learning Approach

« Set up a set of smaller tasks during training which simulates what we will be
doing during testing

Training task 1 Training task2 - - - Test task 1

Support set Support set Support set

g

1 1]

L ]
AL o - J|

el

't ' LN

Query set Query set Query set
Y Yy Y

e~ DEE TEE

— Can optionally pre-train features on held-out base classes (not typical)

« Testing stage is now the same, but with new classes




(More Sophisticated) Meta Learning Approaches

« Learn gradient descent — “learning to optimize”

— Parameter initialization and update rules
— Qutput:
« Parameter initialization
» Meta-learner that decides how to update parameters

« Learn an initialization and use normal gradient descent (MAML)
— Qutput:

 Just parameter initialization!
« We are using SGD



Model-Agnostic Meta-Learning (MAML)

a general recipe:

training data test set — meta-learning
N T ---- |earning/adaptation
BT - e 0
—_— —————— . VL;
'meta-training L[Sl E
| . AL N VEE #
: : VL, Pl
'l' ,' » /’/' ‘\\\ ‘
Dtrain Dtest ()l . '93
s | K i Chelsea Finn
/ ] ) In general, can take more than one
9(—9—35 Vo L(0 —aVgeL(0,D;... D : .
"L : ( (9> Dirain) L*fs‘*)‘ gradient step here
i

! ** we often use 4 — 10 steps

“meta-loss” for task i

Finn et al., “Model-Agnostic Meta-Learning”



Active Learning

From Education . . .

C. Bonwell and J. Eison [1]: In active learning, students participate in the process and
students participate when they are doing something besides passively listening. It is a model
of instruction or an education action that gives the responsibility of learning to learners
themselves.

.. . to Machine Learning:

Settles [2, p.5]: Active learning systems attempt to overcome the labeling bottleneck by
asking queries in the form of unlabeled instances to be labeled by an oracle. In this way, the
active learner aims to achieve high accuracy using as few labeled instances as possible,
thereby minimizing the cost of obtaining labeled data.

[1] Charles C. Bonwell and James A. Eison. Active [2] Burr Settles. Active learning literature survey. Computer Sciences
learning: Creating excitement in the classroom. ASHE- Technical Report 1648, University of Wisconsin-Madison, Madison,
ERIC Higher Education Report, 1, 1991. Wisconsin, USA, 2009.



Active Learning

Setting
« Some information is costly (some not)
» Active learner controls selection process

Objective
« Select the most valuable information
 Baseline: Random selection

Historical Remarks
«  Optimal experimental design
«  Valerii V. Fedorov. “Theory of Optimal Experiments Design”, Academic Press, 1972.
« Learning with queries/query synthesis
«  Dana Angluin. “Queries and concept learning”, Machine Learning, 2:319{342,1988.
« Selective sampling
« David Cohn, L. Atlas, R. Ladner, M. El-Sharkawi, R. Il Marks, M. Aggoune, and D. Park. “Training
connectionist networks with queries and selective sampling”, In Advances in Neural Information
Processing Systems (NIPS). Morgan Kaufmann, 1990.



Selective Data Acquisition Tasks

A short diverticula
from pool of unlabelled data

= | “
/oy -

-—
—

2
» | »

" PN
0. ?

Active Sampling 4 Selective Sampling - this talk
(inductive learning) (transductif learning)
main assumption : obtaining an main assumption : obtaining an
unlabeled instance is not free _ unlabeled instance is free
Combine?

Link with “Active class selection”?



Uncertainty sampling

3 T T T T T
2r ldea
r « Select those instances where we are least
°r certain about the label
-1 F
2
L Approach

4 « 3 labels preselected
3 — * Linear classifier
2 « Use distance to the decision boundary as
1E uncertainty measure
0 -
1k

“Training connectionist networks with queries and selective sampling”.

2 r David Cohn, L. Atlas, R. Ladner, M. El-Sharkawi, R. Il Marks, M. Aggoune, and D. Park.
3 ! In Advances in Neural Information Processing Systems (NIPS). Morgan Kaufmann, 1990.




Uncertainty sampling

+ easy to implement
+ fast

== N0 exploration (often combined with random sampling)

== impact not considered (density weighted extensions exist)
== problem with complex structures (performance can be
even worse than random)

Pure exploitation, does not explore
Can get stuck in regions with high Bayesian error




Ensemble-based Sampling

‘L
+ C\ aeg,ﬁ\

L2 “Disagreement

~

Feature X2

C B .h.
.I_assifie;'l

Feature X,

|dea

Use disagreement between base classifiers

Approach

N N RS e M

Get an initial set of labels

Split that set into (overlapping) subsets

On each subset, train a different base-classifier

Repeat until stop

On each unlabeled instance do

Apply all base-classifiers
Request label, if base-classifiers disagree
Update all base-classifiers

Go to step 4

“Query by committee”, H. Sebastian Seung, Manfred Opper, and Haim Sompolinsky.
Fifth workshop on computational learning theory. Morgan Kaufmann, 1992.



Transfer Learning

Improve Learning New Task
by Learned Task

driver of ML

success.’

Andrew Ng,
PALNIBS2016 tutorial

Target Domain

-~

B’

Algorithms

Generalization

Target Domain




Multi-Task Learning

(o m e e - N
Task 1 Domain

{

! |

I |
|

: Training Data |

S 4

Multi-Task Learning‘
4 )
\_

— )
Task 3 Domain

-
G ))

Generaliz Generaliz Generaliz
ation ation ation
Ny - S
: Task 1 Domain ! Task 2 Domain | mas : Task 3 Domain
N e e e e e e o e J \ e e e e e e e e o J \ o e e e e o e e o




Transter Learning: Main Solutions

 Instance (Data) Transfer
* Reweight instances of target data according to source
* Example: importance sampling; some “style-transfer” for data adaptation

e Feature Transfer

* Mapping features of source and target data in a common space
* Example: TCA; common pre-training + tuning methods in DL

 Parameter Transfer

* Learn target model parameters according to source model
* Example: Multi-task learning; Net2Net



How transferable are deep learning features?

©) War () Waz (] Was [ Was () Was [} Was ] War (] Was (O
. '8} O
Standard BP training . 16 o
nput o O labels baseA
on dataset A A S ol A
@) O
\QJ W \J W/ W \J W/ \J Qa‘
@) Woi (| Wz [} Was (] Weu () Wes (] Wee (| War (] Was (@)
. ) @
Standard BP training —— Oltavets [,
on dataset B B |@ @ B
) @
\QJ w W/ w W \J W \J \QJ
@) Voi () W [ Wbs () [ i i ( @)
Reuse first n=3 layers S i | =19 B3R
weigh f B @ | - - Q@ and
cights ofbaseB g ENETe [
and train on !
\g \J \J/ \J/ \J/ \J \J W \!/
. @ Wai (| War [} Was (] i i \ ( @)
Reuse first n=3 layers S | 1S A3B
weights of baseA @ > 5@ and
ghts ® . @ A3B*
and trained on B @ ! Q@
\!J \J/ \J/ \/ W/ \J \J/ W \!J



Net2Net Transfer

* Net2Net reuses information of an already trained deep model to
speedup training of a new model (potentially different topology)

Traditional Workflow Net2Net Workflow

Initial Design Rebuild the Model Initial Design Reuse the Model

g~ 78 =
@ Q Net2Net Operator
U N <
Training i> Training : Training [\,>
& 5
R =
@ i Training
U
m



Net2Net Transfer

e Wider

* Deeper

Original Model Layers that Initialized as A Deeper Model Contains

Identity Mapping Initialized Layers

3 Identity Mapping
:[\Fl &é



The Multi-Blah Family

Multi-Task Learning
* A set of related machine learning tasks

» Different samples, (usually) same features for each task

Multi-View Learning

* Alearning task involving a set of different views of the same set of objects (e.g., text and image
descriptions)

* Same samples, different features for each view

Multi-Label Learning

* Alearning task where the prediction for each sample includes multiple labels (e.g., news categories)
* Can be considered as multi-task with the same data matrices

Multi-Class Learning

» A classification task where the label can be multiple values (e.g., weather prediction)

* Can be considered as multi-label with mutual exclusive labels.



Multi-Task Learning: Main Solutions

 Direct Parameter Sharing (straightforward)

* Examples: shared weights or activations in neural networks; shared parameters
In Gaussian process

e Structural Regularization (today’s focus)
e Can be designed to incorporate various assumptions and domain knowledge
* Can be trained using large-scale optimization algorithms on big data
* The key is to design the regularization term that couples the tasks.



Multi-Task Learning with Joint Sparsity

* Using group sparsity: ¢; /£,-norm regularization

* When g>1 we have group sparsity.

Y X W

]

ez -

| smpes | N

“se ~ . X -

| smplen2 | -

e DR F

| | N N

< > < * < x> @‘3‘““\ z‘*s R <
Output Input Model
nxm nxd dxm

1 d Regularization
mins IXW = Y113 + Wi, Wl =) Iwll,  Encouragesgroup
i=1 sparsity



Multi-Task Learning with Low-Rank Parameters

e Capture task relatedness via a shared low-rank structure

training data weightvector  target basis vector  basis vector

— ) T
Task1l | ' X ~ = aq |t ar [, EE— [
T
I I a a
\_ I -/ - . = X 1 2
f — N\ - _ :81 :82
l | i L Yi Y2
[ | _ _ _| -
Task 2 X = = Bil |+ B \ Y J S Coefficients
\I | . ) " ] 1 Model Matrix Basis vectors
- - = - _ _
| |
. % S _ N Rank minimization formulation
Task 3 5 V1 V2
| | — minLoss(W) + AXRank(W)
w
& - =/ -T — ||




Clustered Multi-Task Learning

* Use regularization to capture clustered structures.

___________________________________________________________________________________________________________

Clustered Models

\ )\ J
Y Y !
Cluster 1 Cluster 2 Cluster k-1 Clusterk |

- .
-----




Multi-Task Learning in DNNs

Task A

Task B

Task C

I

I

i

i

i

i

Constrained
layers



Now let’s get ambitious: learning with NO Labels!!

P> “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar reward given once in a
while.

> A few bits for some samples

P> Supervised Learning (icing)

» The machine predicts a category or a few numbers
for each input

» Predicting human-supplied data
» 10—10,000 bits per sample

P> Self-Supervised Learning (cake génoise)

» The machine predicts any part of its input for any
observed part.

P Predicts future frames in videos
» Millions of bits per sample



First category of unsupervised learning

e Generative modeling
o Generate or otherwise model pixels in the input space

o Pixel-level generation is computationally expensive
o Generating images of high-fidelity may not be necessary for

representation learning

Discriminator

7 ]3 @E Hrae

¢

Generator = Fake image

Autoencoder Generative Adversarial Nets

Image credit: Xifeng Guo, Thalles Silva.



Second category of unsupervised learning

e Discriminative modeling
o Train networks to perform pretext tasks where both the inputs and

labels are derived from an unlabeled dataset.
o Heuristic-based pretext tasks: rotation prediction, relative patch
location prediction, colorization, solving jigsaw puzzle.

o Many heuristics seem ad-hoc and may be limiting.

| Objectives:
ConvNet Maximize prob
> o(X,y=0) B " nodd R o F(x")
Rotate 0 degrees ‘ Predict 0 degre (y=0)

Rd{aled image: x'

- g(X,y=1) — g p ConvNet p Maximize prob.
) sﬁ‘ odel F(. 1yl
Riotais 2 dogrses Rotated i 1 Predict 90 degrees rotation
otated image: X

N3 g

\J
8 Q 8
o [=9
2z =

5
B ]
= ~
~—"38 -~

o

i

> g(X,y=2) .

Image X' Rotate 180 degrees 4 | l—- - '- -
Rotated image: X I Rl !
I 1
\ [ I
\ i Ly 1
cond btnasd toced

B % ConvNet > Maximize prob. ‘
— g(X,y=3) —» i model F() 5 (X2)

Rotate 270 degrees ‘ : : — . .
Rotated image: X° Predict 270 degrees rotation (y=3) | Images: [Gidaris et al 2018, Doersch et al 2015]



Motivation and Methodology

Predict any part of the input from any
other part.

Predict the future from the past.

Predict the futur
Predict the past from the present.
Predict the i«

p from the bottom.

Predict the occluded from the visible

Pretend there is a part of the input you
don’t know and predict that.

e from the recent past.

Time —>

y

h

«— Past

Present

Future —
Slide: LeCun

Main Tasks in Use:

m Reconstruct from a corrupted
(or partial) version
s Denoising Autoencoder
= In-painting
a Colorization
m Visual common-sense tasks
= Relative patch prediction
s Jigsaw puzzles
= Rotation
m Contrastive Learning
s word2vec
s Contrastive Predictive
Coding (CPC)
H MoCO, simCLR ...



Example 1: Solving Jigsaw Puzzles

i“/w‘%/loo_/ _

fc7 fcg softmax

Permutation Set

index permutation Reorder patches according to
the selected permutation

64 9.4,683251,7

) AN Y

[2)
o

TITTTITTT



Example 2: Rotation

.. T/ /1

I_Objectives:
> I Maximize prob. ‘
L F(x)

l Predict 0 degrees rotation (y=0
Rotated image: X" = 6=0) |

== |

ConvNet . Maximize prob.
model F(.) F(x") |

Predlct 90 degrees rotation (y=1) |

ConvNet

—» g(X,y=0) model F(.)

Rotate 0 degrees

—» g(X,y=1)

Rotate 90 degrees
Rotated image: X' |

> (X, y=2) ConvNet Maximize prob. W |

mw_!_ﬁ F(X?)

| Predict 180 degrees rotation (y=2)

|
Com . Maximize prob. | |

R

I Predict 270 degrees rotation (y=3) |

Rotate 180 degrees
Rotated image: X

—» g(X,y=3)

Rotate 270 degrees

Rotated image: X°



Momentum Contrast (MoCo)

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haoqi Fan  Yuxin Wu  Saining Xie Ross Girshick

Facebook AI Research (FAIR)

_ 0
contrastive loss / \
A 0 0
s similarity < l 1 lk
q 'ILO l‘“l 'l"2 el Encoder Momentum Encoder
A A
ueue k = fo (o
. q =10 faloo
! O = mO + (1 —m)0,
momentum
encoder encoder \ /
q \ Y k

ke ke ke
query g i 4 y
x ol el [

Contrastive Loss ]

exp(q-k+ /)

S K exp(qki/T)



accuracy (%)

70

3

|
o

Momentum Contrast (MoCo)

- R
SMC-R50w2x - 50:'4" AMDIM-large
R50w2x CPCv2
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® previous
#parameters (M) 4MoCo
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0 200 400 600

method architecture #params (M) | accuracy (%)
Exemplar [17] R50w3x 211 46.0 [38]
RelativePosition [13] | RSOw2x 094 51.4 [38]
Jigsaw [45] R50w2x 04 446 [38]
Rotation [19] Rv30wd x 86 55.4 [38]
Colorization [64] R101* 28 30.6 [14]
DeepCluster [3] VGG [53] 15 484 [4]
BigBiGAN [16] R50 24 56.6
Rv30wd x 86 61.3
methods based on contrastive learning follow:
InstDisc [61] R50 24 54.0
LocalAgg [66] R50 24 58.8
CPC v1 [46] R101* 28 48.7
CPC v2 [35] RI1707. 303 65.9
CMC [56] R50; ,ap 47 64.11
R50W2 X +ab 188 68.41
AMDIM [2] AMDIMggpa 194 63.51
AMDIM ;e 626 68.11
MoCo R50 24 60.6
RX50 46 63.9
R50w2x 04 65.4
R50wd4 x 375 68.6

[able 1. Comparison under the linear classification protocol
m ImageNet. The figure visualizes the table. All are reported as
msupervised pre-training on the ImageNet-1M training set, fol-
owed by supervised linear classification trained on frozen fea-



Simple Contrastive Learning (simCLR)

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen! Simon Kornblith! Mohammad Norouzi' Geoffrey Hinton !

« Simple idea: maximizing the agreement of representations
under data transformation, using a contrastive loss in the
latent/feature space

« Super effective: 10% relative improvement over previous
SOTA (cpc v2), outperforms AlexNet with 100X fewer labels

Maximize Agreement

Z) - > Zj
9() T T 9()
h; +Representation— h;

Figure 2. A framework for contrastive representation learning.
Two separate stochastic data augmentations ¢, ' ~ T are applied
to each example to obtain two correlated views. A base encoder
network f(-) with a projection head g(-) is trained to maximize
agreement in latent representations via a contrastive loss.



Simple Contrastive Learning Contrast (simCLR)

simCLR uses random crop and color distortion for augmentation.

Examples of augmentation applied to the left most images:

T | e OES— . — e —_— T ——

Maximize Agreement
Z, - > z’

9(-) Tf/

h; +Representation— h;

()
f() 1.}"(-)




Simple Contrastive Learning Contrast (simCLR)

ternal representation.

INn

f(x) is the base network that computes

Agreement
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Simple Contrastive Learning Contrast (simCLR)

g(h) is a projection network that project representation to

a latent space.

simCLR use a 2-layer non-linear MLP

hidden 1
= output layer
- — =
RN




Simple Contrastive Learning Contrast (simCLR)

Maximize agreement using a contrastive task:

Given {x_k} where two different examples x_i and x_j are a
{ : Maximize Agreement | J positive pair, identify x_jin {x_k} {k!=i} for x_i.
P > j

h; +Representation— h;

riginal image crop

crop

contrasiive Iimage

Let sim(u,v) = u' v/|ul|||v|

Loss function: exp(sim(z;, z;)/7)

Zizl ik exp(sim(z;, 2x)/7)

gi,j = — log



simCLR algorithm in pseudo code

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, temperature 7, form of f, g, 7.
for sampled mini-batch {z.};_, do
forallk € {1,...,N} do

draw two augmentation functions t ~ 7, t' ~T

# the first augmentation

Eop—1 = t(zr)

Rk = i) # representation

2zop—1 = g(hor_1) # projection

# the second augmentation

:i:2k = t'(il‘:k)

hor = f(Zox) # representation

Zor = g(hox) # projection
end for
foralli € {1,...,2N}andj € {1,...,2N} do

sij = z; zj/(T||zilll|lz;]l)  #pairwise similarity
end for

define /(7, j) as —s; ; + log zfi’l 1jx2s) €xp(8i k)
L= [6(2k—1,2k) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f

Take-home key points:

No memory bank, but benefit from large batch
sizes (at least, 1k-2k per minibatch)

To avoid shortcut, use global BN (Compute BN
statistics over all cores)

Composition of augmentations are crucial. And
contrastive learning needs stronger data/color
augmentation than supervised learning

A nonlinear projection head improves the
representation quality of the layer before it

“Temperature hyperparameter” in the
contrastive loss is very critical

Unsupervised contrastive learning benefits
(more) from bigger models (simCLR v2)

simCLR can immediately be used to few-shot,
semi-supervised, and transfer learning



simCLR as a strong semi-supervised learner

Unsupervised pre-training
with a contrastive loss

$
L |
Projection l } l
head ) Supervised Unsupervised

[ . ] > fine-tuning > dIStI“atIC.)n.Of
task predictions

Task-agnostic e =
: ask-specific
Big CNN CNN

5 Small fraction of A
data that has
class labels

Unlabeled Unlabeled
data data

“Pre-train, Fine-tune, and Distill”
e Surprise: Bigger models are more label-efficient!
* Using pre-training + fine-tuning, “the fewer the labels, the bigger the model”
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