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Deep Learning on the Edge

* Deploying CNNs on resource-constrained platforms/at the edge

* Two Scenarios: Inference (pre-trained model), and Training (online adaptation)

Real-Time Machine Learning (RTML)

PROGRAM SOLICITATION
NSF 19-566

National Science Foundation

Directorate for Computer and Information Science and Engineering
Division of Computing and Communication Foundations

Directorate for Engineering
Division of Electrical, Communications and Cyber Systems

RTML Program goal: “for next-generation co-design of RTML algorithms and hardware, with the principal focus on
developing novel hardware architectures and learning algorithms in which all stages of training (including
incremental training, hyperparameter estimation, and deployment) can be performed in real time.”



Deep Learning on the Edge

Three Top Concerns:
e Storage and Memory
* Speed or Latency
* Energy Efficiency

M (3533 C3531
€3530 C3532

The three goals all pursue “light weight”
... but they are often not aligned*

* ... 50 need to consider all in implementation i s of CO2 equivalent
. . Roundtrip fli /W and SF (1 -
* ... and for both Inference and Training passengeny | end SE( |Im4
Human life (avg. 1 year) 11,023
American life (avg. 1 year) . 36,156

. . . . . . hlfi;;rei?cudingfue\|ja'v'g,1
* Broad economic viability requires energy efficient Al ™

Transformer (213M parameters)
. . . . w/ neural architecture search
* Energy efficiency of a brain is 100x better than
current SOTA hardware!

* Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks, IEEE ISSCC 2016



Model Compression

Training Phase:

o The easiest way to extract a lot of knowledge from the training data is to learn many different
models in parallel.

o 3B: Big Data, Big Model, Big Ensemble
o Imagenet: 1.2 million pictures in 1,000 categories.
o AlexNet: ~ 240Mb, VGG16: ~550Mb
Testing Phase:
o Want small and specialist models.

o  Minimize the amount of computation and the memory footprint.
o Real time prediction
O

Even able to run on mobile devices.



Two Main Streams

* “Transfer”: How to transfer knowledge from big general model (teacher) to small
specialist models (student)?
* Example: “Distilling the Knowledge in a Neural Network”, G. Hinton et. al., 2015

* “Compress”: How to reduce the size of the same model, during or after training,
without losing much accuracy.

* Example: “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained
Quantization and Huffman Coding”, S. Han et. al., 2016

* Comparison: Knowledge Transfer provides a way to train a new small model
inheriting from big general models, while Deep Compression Directly does the

surgery on big models, using a pipeline: pruning, quantization & Huffman coding.



Knowledge Transfer/“Distillation”: Main Idea

e Introduce “Soft ta rgets” as one e Hard Target: the ground truth label (one-hot vector)

way to transfer the knowledge  ® Soft Target  eap(z/T) T is “temperature”, z is logit

from big models. 1T S ean(z;/T)

e Classifiers built from a softmax
function have a great deal

e More information in soft targets

cow dog cat car

more information contained in = : - o] original hard
them than just a classifier; iargets
: : cow dog cat car
* The correlations |.n the softmax : : o iEne ot
outputs are very informative. » - 005] of ensemble

Hinton’s Observation: If we can extract the knowledge from the data using very big models or
ensembles of models, it is quite easy to distill most of it into a much smaller model for deployment.

More follow-up observations: teachers can be weak, or even the same as student ...
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Retrain to Recover Accuracy

-O-L2 regularization w/o retrain
L1 regularization w/ retrain

~4-L1 regularization w/o retrain
“O-L2 regularization w/ retrain

Deep

~®-| 2 regularization w/ iterative prune and retrain
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Network pruning can save 9x to 13x parameters without drop in accuracy



Weight Sharing (Trained Quantization)

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids

-0.98| 1.48 | 0.09 30| 2 1 3:. .

Dee p 0.05 | -0.14 | -1.08 cluster | 1 1 o | 3 | 2150 1.48
Compression: oo 888 0 o2~ | o | 3| 1| o | |ass l a0

Main Idea (iii) — .

gradient
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom)



Huffman Coding

Deep

) . Quantization: less precision Huffman Encoding
. Pruning: less quantty
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* Determining low-saliency parameters, given a pre-trained network

* Follows the framework proposed by LeCun et al. (1990):

Train Connectivity

1. Train a deep model until convergence % = \
2. Delete “unimportant” connections w.r.t. a certain criteria k""‘“" °°'"‘°°"°"‘J
M ore A b out 3. Re-train the network ) 283 .

4. Iterate to step 2, or stop | Train Weights

* Defining which connection is unimportant can vary
* Weight magnitudes (L?, L}, ...)

before pruning after pruning

* Mean activation [Molchanov et al., 2016]
Avg. % of Zeros (APoZ) [Hu et al., 2016]
Low entropy activation [Luo et al., 2017]

pruning
synapses

-——

pruning
- -
neurons




Human brains are also using pruning schemes as well

* Synaptic pruning removes redundant synapses in the brain during lifetime

At birth

Human Brain

Prunes too!

Expenence-dependent synapse formation
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Network pruning perturbs weights W by zeroing some of them

How the loss L would be changed when W is perturbed?

OBD approximates L by the 2" order Taylor series:

Optimal Brain 23 P 2 Tl 1 P g, 0w

Sw? + =
2 ; 8’(1)7;2 wz+2 — 8’(1)18’11)]

-4 N J

~"

1st order 2ndtrder

/

Problem: Computing H = (aw‘?gw,) is usually intractable
195 /4,

Damage (OBD)

* Requires 0(n?) on # weights

* Neural networks usually have enormous number of weights

- e.g. AlexNet: 60M parameters = H consists ~ 3.6 x 101> elements



Problem: Computing H = (a aé’ ) is usually intractable
Wi /i,

Two additional assumptions for tractability

1. Diagonal approximation: H = L —q if =

8wiawj

2. Extremal assumption: 9 =( Vi

* W would be in a local minima if it’s pre-trained

Optimal Brain

Damage (OBD)

1 o’L . 3
* Now we get: 0L ~ 5 8w-25wi + O(||[oW||?)
* It only needs diag(H) := (%)

diag(H) can be computed in 0(n), allowing a backprop-like algorithm
* For details, see [LeCun et al., 1987]



How the loss L would be changed when W is perturbed?

1 2L 1
L(6W) ~ 5 gw.25wi2 =: Z éhiiéwf

1
The saliency for each weight = s; == §hii|wi|2 s; = |w;|

/

OBD shows robustness on pruning compared to magnitude-based deletion

Optimal Brain

After re-training, the original test accuracy is recovered

Damage (OBD)
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* “Un-structured” weight-level pruning may not engage a practical speed-up
* Despite of extremely high sparsity, actual speed-ups in GPU is limited

sparsity = percentage of zeros

215 , S — ,
= 1 / T l EJQuadro K600
)
3 1 ¢ = E3Tesla K40c
7 % CIGTX Titan
0.5 o - .
parsity
o . L] m 0

Structured

convl conv2 convd conv4 convs

S p als |ty Speed-up ratio of weight-level pruning

Non-structured sparsity (poor data pattern)

Structured sparsity (regular data pattern)
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5x speedup after concatenation of nonzero rows and columns




* Structured sparsity can be induced by adding group- Iasso regularization

min £(W +A§:R (W), EHNMWQ
W
=1
* Filter-wise and channel-wise: # filters # channels
l l
SR Ry (W) = SN Wl + 20T W, e
S p a rS |ty Table 1: Results after penalizing unimportant filters and channels in LeNet
LeNet # Error  Filter #°  Channel #° FLOP* Speedup *
| (baseline) 0.9% 20—50 1—20 100%—100%  1.00x—1.00x
2 0.8% 5—19 |—4 25%—7.6% 1.64x—5.23 %
3 1.0% 3—12 1—3 15%—3.6% 1.99x—7.44 x

S
*In the order of convI—conv2

LeNer 1 G (5 50 [ 1 P ) 0 0 S R I 9 S 1

2o | [l [P ™ i el T E
Levees [ HIEEEEEEN TN

Fewer but smoother feature extractors



Lottery
Ticket

Hypothesis

The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnet-
work that is initialized such that—when trained in isolation—it can match the test accuracy of the
original network after training for at most the same number of iterations.

Original network Winning Ticket

* Winning Ticket gives
* Better or same results
+ Shorter or same training time
* Notably fewer parameters
* Is trainable from the beginning

Prune p%

—> Mask m

f(x, m O 6,)
f(x; 6,)




Searching for Tickets: lterative Magnitude Pruning

Wo

Lottery
Ticket

Hypothesis

mit ) © Wy (") ® W("+1) (n+1) ® W(n+1)

AT R

Iterate..




Lottery Ticket
Hypothesis on Big
Pre-Trained Models

MIT News

ON CAMPUS AND AROUND THE WORLD

Shrinking massive neural networks used to model
language

A new approach could lower computing costs and increase accessibility to
state-of-the-art natural language processing.

Daniel Ackerman | MIT News Office
December1,2020

The Lottery Ticket Hypothesis for
Pre-trained BERT Networks

Subnetworks on the Source Tasks (Sparsity %)

Tianlong Chen', Jonathan Frankle?, Shiyu Chang?, Sijia Liu®, Yang Zhang?,
Zhangyang Wang!, Michael Carbin®
'University of Texas at Austin, 2MIT CSAIL, MIT-IBM Watson Al Lab, IBM Research

{tianlong.chen,atlaswang}@utexas.edu,{jfrankle,mcarbin}@csail.mit.edu,
{shiyu.chang,sijia.liu,yang.zhang2}@ibm.com
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QQP (70%)
STS-B (70%)
WNLI (70%)
QNLI (70%)
MRPC (70%)
RTE (70%)
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(IMP) MLM (70%)

Pruning 6 (70%)
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* Neural networks can be even binarized (+1 or -1)
* DNNs trained to use binary weights and binary activations

* Expensive 32-bit MAC (Multiply-ACcumulate) = Cheap 1-bit XNOR-Count

* “MAC == XNOR-Count”: when the weights and activations are +1 \
# 1s in bits

More About

Binarized weights

Quantization




* Idea: Training real-valued nets (W) treating binarization (W},) as noise
* Training W, is done by stochastic gradient descent

* Binarization (W,. - W) occurs for each forward propagation
* On each of weights: W, = sign(W,.)
« ... also on each activation: a;, = sign(a,)

Binary

N eura | * Gradients for W, is estimated from ;—Wf;b [Bengio et al., 2013]
* “Straight-through estimator”: Ignore the binarization during backward!
Networks N

oW, aWbIIerﬁl

oL __ 8L1
da,  Oayp la,|<1

* Cancelling gradients for better performance
* When the value is too large




* BNN yields 32x less memory compared to the baseline 32-bit DNNs
* ... also expected to reduce energy consumption drastically

» 23x faster on kernel execution times

B| Nna ry * BNN allows us to use XNOR kernels _ GPU KERNELSTEXECUTION TIMES
* 3.4x faster than cuBLAS t
Neural 5
Operation MUL ADD )
N etWO r kS 8bit Integer 0.2pJ 0.03p] :
32bit Integer 3.1pJ  0.1p] 1
16bit Floating Point  1.1pJ  0.4p] . .

32tbit Floating Point  3.7pJ  0.9pJ

MATRIX MULT. (s MNISTMLP (s MLP TEST ERROR (%

W BASELINE KERNEL m CUBLAS/THEANO XNOR KERNEL

* BNN achieves comparable error rates over existing DNNs
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Real-World Efficient ML: Way to Go

* Jointly utilizing several compression means

* Also can choose efficient “by-design” models (MobileNets, or even non-deep
models, etc.)

* Data processing is often a key concern, maybe more important
* Hardware co-design is another key concern
* Resource constraints & user demands often change over time



Demo: Energy-Efficient UAV-Based Text Spotting System

* Task: accurate detecting signs and
recognizing texts in the video, captured by
an unmanned aerial vehicle (UAV), with
minimal energy cost as possible
(Hardware: Raspberry Pi 3B+)

 Our solution won 2" prize in the high-
visibility IEEE CVPR 2020 Low-Power
Computer Vision (LPCV) Challenge, among
11 university & company teams that
submitted 84 independent solutions.

SPONSORS

O pyTorch &7 XILINX, Google

oo g - 2020 Low-Power Computer Vision Challenge


https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

Model Parallelism

Machine |
¢ 2Ulydel,

Machine 3
i 2UIydel,]

 Deep netis stored and processed on multiple cores
(multi-thread) or machines (message passing)

* Performance benefit depends on connectivity
structure vs. computational demand



Data Parallelism

Parameter Server w=w- '7AW Parameter Server
Coordinator
(small messages)
/
S 1]\ |OSAIL N
Model # i
quel { Replicas | |
Replicas [
A
Data /= ol b ey

Asynchronous SGD Distributed L-BFGS



From Inference to Training: Lessons and Challenges

* Training v.s. Inference: one-pass Vv.s. iterative

* Lessons that we learned from Inference:
* Model parameters are not born equally, and many redundancies do exist
* Know your specific goal: saving memory, latency and energy are often not aligned
* To achieve energy goal, realistic energy models and/or hardware measurements are very helpful
e Consider a more “end-to-end” effort beyond just the model itself (data, hardware, architecture...)

* New Challenges posed for Training:
» Saving per-sample (mini-batch) complexity (both feed-forward and backward)

* The empirical convergence (how many iterations needed) matters more than per-MB complexity
» Data access/movement bottlenecks are (even more) crucial



Energy-Efficient Training: Prevailing Demands

\\\\\\\\\\\\
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 Shifting model training from the cloud to the edge

* Facilitating personalization; saving bandwith/communication energy; protecting privacy

* Deep learning has a terrible carbon footprint
* “Training a single Al model can emit as much carbon as five cars in their lifetimes”, MIT Tech Review



On-Device Training (Adaptation) is on Growing Demand

ek A \
_— -
| :I‘ wﬂw\'\J\‘IM

Train on collected datasets Adapt to real environments

I]_-n ~ Directly deploy, i.e., without adaptation

Train on collected datasets Deploy in real environments



Problem Setting

* We consider the most basic CNN training, assuming both the model
structure and the dataset to be pre-given, training from scratch

* Trim down the total energy cost for in-situ, resource-constrained training.
* not usually the realistic loT case, but address it as a starting point

* Many existing works are on accelerated CNN training

* ... they mostly focus on reducing the total in resource-rich
settings, such as by distributed training in large-scale GPU clusters



“Three-Pronged” Approach:

Data-Level: stochastic mini-batch
dropping

Layer-Level: selective layer update

Bit-Level: predictive sign gradient
descent

Model-Level: SLU

Bit-level: PSG

m Accuracy (vs. Original One) | Energy Savings

Data-Level: SMD

CIFAR-10 MobileNetV2 92.06% (vs. 92.47%) 88%
ResNet-110 93.01% (vs. 93.57%) 83%
CIFAR-100 MobileNetV2 71.61% (vs. 71.91%) 88%
ResNet-110 71.63% (vs. 71.60%) 84%

Energy savings is quantified based on FPGA implementation



) EB-Train: Training via Early-Bird Lottery Ticket [ICLR'2020]

=%

Progressive Pruning and Training (e.g., [J. Frankle, ICLR 2019])

Trained Model

)t Rk IR

100% training

For the first time:
Early-Bird Train (Proposed) 1. We discover the existence of Early-Bird (EB) Tickets

2.  We propose a detector of low cost to detect EB Tickets

<] ‘ ~ 3. We leverage the existence of EB Tickets to develop an

efficient training scheme

hv-2 v4
\ » 5.8X% - 10.7X% reduced training energy with a comparable or

10% - 20% training even better accuracy over the most competitive baseline



ShiftAddNet: A Hardware-Inspired Deep Network [NeurIPS'2020]

Start
« Multiplication dominates the computation workloads of deep networks '
* How multiplication is efficiently implemented in hardware accelerators? M%M”
* Any multiplication = a left/right bit shift, and an addition of the residual |
1a. Add multiplicand to product and
Feature Extraction Classification place the result in Product register

Y \
$ | 2. Shift the Multiplicand register left 1 bit |
B at |
_____________________________________________________________________________________________________ | 3. Shift the Multiplier register right 1 bit |
Add
0.5 | -1.1 1
0 0 0 0 0 -0.3 0 1.2 1
0 |Ing,|Iny,|In 0 . Outy, | Outy, | Out;; :
0 |In, |Iny, |In 0 |——: > Out,, Out,, | Outys | |
0 (In Ing, | In 0 :
Outy, | Outy, | Outy; [
olofofo|o] kixw==> x=wh

Insight: We explicitly re-build a new multiplication-free deep network, where each multiplication
layer is re-parameterized into two learnable layers: element-wise bit-shift layer, and additive layer

Performance: ~ same accuracy + up to 1, 80% energy cost. on CIFAR-10/100 and several loT datasets (inference + training)
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E2-Train: Energy-Efficient Training Framework (NeurlPS’19)

Batch 1

Model-Level: SLU

(Selective Layer-wise
Updating)

Batch N

r__'_
i - s
W, Tam

a'

Data-Level: SMD Algorithm-Level: PSG
(Stochastic mini-batch dropping) (Predictive Sign Gradients)




Data-Level: Stochastic mini-batch dropping (SMD)

“Frustratingly easy” strategy: randomly skipping mini-batches with 0.5 prob.
throughout training

* |t sounds ridiculous, but it works!!!

* We fine-tuned the learning rates, decay, etc., for the original training protocol, but
were unable to outperform SMD

* We aim to present some proof from non-asymptotical SGD... stay tuned!

Example: ResNet-110 on CIFAR-100

_ Energy Savings Accuracy (top-1) Accuracy (top-5)

Original 71.60% 91.50%
SMD 48.43% 70.40% 92.58%



Model-Level:
Input-dependent selective layer update (SLU)

P ~
/’ C \\
. ~
- — S~
- ~

o
"O—» Pred.

Loss |.

For each minibatch, we select a different subset of CNN layers to be updated, in an input-adaptive way
Implementation: extend the idea of dynamic inference to training , both feed-forward and backward
Routing by a series of RNN gates: they cost less than 0.04% FLOPs than the typical base models

As a side effect, SLU will naturally yield CNNs with dynamic inference capability

The practice of SLU seems to align with several recent theories on CNN training
* “not all layers are created equal”, and “lottery ticket”, etc.



Algorithm-Level:
Predictive sign gradient descent (PSG)

Low-precision implementation is a very effective knob for achieving energy efficient CNNs

Training with extremely low-precision (binary) gradients, e.g., SignSGD, is shown to be feasible
* However, they require the computation of full-precision gradients before taking signs -> not energy saving!

We predict the sign of gradients using low-cost bit-level predictors, therefore completely bypassing
the costly full-gradient computation.

i] =

sgn(gmsPi

sgn(gwli])

/)

gl = 7

w

, otherwise

Table 1: Comparing the inference accuracy and energy
savings over the baseline of SGD (32-bit floating point)
when training with 8-bit fixed point [2], and PSG.

Method 32-bit SGD  8-bit [2] PSG
Accuracy 93.39% 93.24%  92.95%
Energy savings NA 38.62% 63.28%

The prediction failure probability of PSG is upbounded by a term that degrades exponentially with the
precision assigned to the predictors



Results: Accuracy versus Energy Trade-oft

Training ResNet-74 on CIFAR-10 (baseline acc: top-1 93.57%)

FLOPs saving Energy saving Accuracy (top-1)

80.27% 83.40% 93.01%
85.20% 87.42% 91.74%
90.13% 91.34% 91.68%

Training ResNet-74 on CIFAR-100 (baseline acc: top-1 71.60%; top-5 91.50%)

FLOPs saving Energy saving Accuracy (top-1) Accuracy (top-5)

80.27% 81.27% 71.63% 91.72%
85.20% 88.72% 68.61% 89.84%
90.13% 92.90% 67.94% 89.06%

Observation: the proposed training does not slow down the empirical convergence. In fact, it even
makes the training loss decrease faster in the early stage.



