


Deep Learning on the Edge
• Deploying CNNs on resource-constrained platforms/at the edge
• Two Scenarios: Inference (pre-trained model), and Training (online adaptation)

2

RTML Program goal: “for next-generation co-design of RTML algorithms and hardware, with the principal focus on 
developing novel hardware architectures and learning algorithms in which all stages of training (including 
incremental training, hyperparameter estimation, and deployment) can be performed in real time.”



Deep Learning on the Edge
• Three Top Concerns:

• Storage and Memory
• Speed or Latency
• Energy Efficiency

• The three goals all pursue “light weight”
• … but they are often not aligned*
• … so need to consider all in implementation
• … and for both Inference and Training

• Broad economic viability requires energy efficient AI 
• Energy efficiency of a brain is 100x better than 

current SOTA hardware!

* Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks, IEEE ISSCC 2016
3



Model Compression



Two Main Streams
• “Transfer”: How to transfer knowledge from big general model (teacher) to small 

specialist models (student)?
• Example: “Distilling the Knowledge in a Neural Network”, G. Hinton et. al., 2015

• “Compress”: How to reduce the size of the same model, during or after training,
without losing much accuracy.
• Example: “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained 

Quantization and Huffman Coding”, S. Han et. al., 2016

• Comparison: Knowledge Transfer provides a way to train a new small model 
inheriting from big general models, while Deep Compression Directly does the 
surgery on big models, using a pipeline: pruning, quantization & Huffman coding.



Knowledge Transfer/“Distillation”: Main Idea

• Introduce “Soft targets” as one
way to transfer the knowledge 
from big models.
• Classifiers built from a softmax

function have a great deal 
more information contained in 
them than just a classifier;

• The correlations in the softmax
outputs are very informative.

Hinton’s Observation: If we can extract the knowledge from the data using very big models or
ensembles of models, it is quite easy to distill most of it into a much smaller model for deployment.

More follow-up observations: teachers can be weak, or even the same as student …



Deep 
Compression: 
Main Idea (i)



Deep 
Compression: 
Main Idea (ii)



Deep 
Compression: 
Main Idea (iii)



Deep 
Compression: 
Main Idea (iv)



More About 
Pruning



Human Brain 
Prunes too!



Optimal Brain 
Damage (OBD)



Optimal Brain 
Damage (OBD)



Optimal Brain 
Damage (OBD)



Structured 
Sparsity



Structured 
sparsity



Lottery 
Ticket 

Hypothesis



Lottery 
Ticket 

Hypothesis



Lottery Ticket
Hypothesis on Big
Pre-Trained Models



Summary of 
Pruning



More About
Quantization



Binary
Neural 

Networks



Binary 
Neural 

Networks



Dynamic 
Inference

SkipNet

BranchyNet
• Only execute a fraction of the

network per needed

• Can enable both “input-dependent”
and “resource-dependent” forms



Real-World Efficient ML: Way to Go

• Jointly utilizing several compression means
• Also can choose efficient “by-design” models (MobileNets, or even non-deep

models, etc.)

• Data processing is often a key concern, maybe more important
• Hardware co-design is another key concern
• Resource constraints & user demands often change over time



Demo: Energy-Efficient UAV-Based Text Spotting System

• Task: accurate detecting signs and 
recognizing texts in the video, captured by 
an unmanned aerial vehicle (UAV), with 
minimal energy cost as possible 
(Hardware: Raspberry Pi 3B+)

• Our solution won 2nd prize in the high-
visibility IEEE CVPR 2020 Low-Power 
Computer Vision (LPCV) Challenge, among 
11 university & company teams that 
submitted 84 independent solutions.

https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/


Model Parallelism



Data Parallelism

Asynchronous SGD Distributed L-BFGS



From Inference to Training: Lessons and Challenges

• Training v.s. Inference: one-pass feedforward v.s. iterative forward + backward

• Lessons that we learned from Inference:
• Model parameters are not born equally, and many redundancies do exist
• Know your specific goal: saving memory, latency and energy are often not aligned
• To achieve energy goal, realistic energy models and/or hardware measurements are very helpful
• Consider a more “end-to-end” effort beyond just the model itself (data, hardware, architecture…)

• New Challenges posed for Training:
• Saving per-sample (mini-batch) complexity (both feed-forward and backward)
• The empirical convergence (how many iterations needed) matters more than per-MB complexity
• Data access/movement bottlenecks are (even more) crucial



Energy-Efficient Training: Prevailing Demands

• Shifting model training from the cloud to the edge
• Facilitating personalization; saving bandwith/communication energy; protecting privacy

• Deep learning has a terrible carbon footprint
• “Training a single AI model can emit as much carbon as five cars in their lifetimes”, MIT Tech Review



On-Device Training (Adaptation) is on Growing Demand



Problem Setting

• We consider the most basic CNN training, assuming both the model 
structure and the dataset to be pre-given, training from scratch
• Trim down the total energy cost for in-situ, resource-constrained training.
• not usually the realistic IoT case, but address it as a starting point

• Many existing works are on accelerated CNN training
• … they mostly focus on reducing the total training time in resource-rich 

settings, such as by distributed training in large-scale GPU clusters



34

E2-Train: Energy-Efficient CNN Training [NeurIPS’2019]

Motivation:

Bit

Data

Layer

Energy savings is quantified based on FPGA implementation

Batch 1

Batch 2

Batch N

…

G

FC

GGG

Pred. 
Loss

Gmsb

Glsb

Model-Level: SLU

Data-Level: SMD Algorithm-Level: PSG

>>

M
U
X

Yes No?

Bit-level: PSG

“Three-Pronged” Approach:
• Data-Level: stochastic mini-batch 

dropping
• Layer-Level: selective layer update
• Bit-Level: predictive sign gradient 

descent 

Datasets Models Accuracy (vs. Original One) Energy Savings
CIFAR-10 MobileNetV2 92.06% (vs. 92.47%) 88%

ResNet-110 93.01% (vs. 93.57%) 83%
CIFAR-100 MobileNetV2 71.61% (vs. 71.91%) 88%

ResNet-110 71.63% (vs. 71.60%) 84%



EB-Train: Training via Early-Bird Lottery Ticket [ICLR’2020]

35

§ Progressive Pruning and Training (e.g., [J. Frankle, ICLR 2019])

1. We discover the existence of Early-Bird (EB) Tickets

10% - 20% training

2. We propose a detector of low cost to detect EB Tickets

3. We leverage the existence of EB Tickets to develop an 
efficient training scheme

Trained Model

…

For the first time:
100% training

§ Early-Bird Train (Proposed)

Ø 5.8× - 10.7× reduced training energy with a comparable or 
even better accuracy over the most competitive baseline



• Multiplication dominates the computation workloads of deep networks
• How multiplication is efficiently implemented in hardware accelerators?
• Any multiplication = a left/right bit shift, and an addition of the residual

We explicitly re-build a new multiplication-free deep network, where each multiplication
layer is re-parameterized into two learnable layers: element-wise bit-shift layer and additive layer

ShiftAddNet: A Hardware-Inspired Deep Network [NeurIPS’2020]

Performance: ~ same accuracy + up to ↓80% energy cost. on CIFAR-10/100 and several IoT datasets (inference + training)





E2-Train: Energy-Efficient Training Framework (NeurIPS’19)

(Stochastic mini-batch dropping)

(Selective Layer-wise
Updating)

(Predictive Sign Gradients)



Data-Level: Stochastic mini-batch dropping (SMD)

“Frustratingly easy” strategy: randomly skipping mini-batches with 0.5 prob.
throughout training

• It sounds ridiculous, but it works!!!
• We fine-tuned the learning rates, decay, etc., for the original training protocol, but

were unable to outperform SMD

• We aim to present some proof from non-asymptotical SGD… stay tuned!

Energy Savings Accuracy (top-1) Accuracy (top-5)

Original N/A 71.60% 91.50%

SMD 48.43% 70.40% 92.58%

Example: ResNet-110 on CIFAR-100



Model-Level: 
Input-dependent selective layer update (SLU)

• For each minibatch, we select a different subset of CNN layers to be updated, in an input-adaptive way
• Implementation: extend the idea of dynamic inference to training , both feed-forward and backward
• Routing by a series of RNN gates: they cost less than 0.04% FLOPs than the typical base models
• As a side effect, SLU will naturally yield CNNs with dynamic inference capability
• The practice of SLU seems to align with several recent theories on CNN training

• “not all layers are created equal”, and “lottery ticket”, etc.



Algorithm-Level: 
Predictive sign gradient descent (PSG)
• Low-precision implementation is a very effective knob for achieving energy efficient CNNs

• Training with extremely low-precision (binary) gradients, e.g., SignSGD, is shown to be feasible
• However, they require the computation of full-precision gradients before taking signs -> not energy saving!

• We predict the sign of gradients using low-cost bit-level predictors, therefore completely bypassing 
the costly full-gradient computation.

• The prediction failure probability of PSG is upbounded by a term that degrades exponentially with the 
precision assigned to the predictors



Results: Accuracy versus Energy Trade-off

FLOPs saving Energy saving Accuracy (top-1)

80.27% 83.40% 93.01%

85.20% 87.42% 91.74%

90.13% 91.34% 91.68%

Training ResNet-74 on CIFAR-10 (baseline acc: top-1 93.57%)

FLOPs saving Energy saving Accuracy (top-1) Accuracy (top-5)

80.27% 81.27% 71.63% 91.72%

85.20% 88.72% 68.61% 89.84%

90.13% 92.90% 67.94% 89.06%

Training ResNet-74 on CIFAR-100 (baseline acc: top-1 71.60%; top-5 91.50%)

Observation: the proposed training does not slow down the empirical convergence. In fact, it even 
makes the training loss decrease faster in the early stage.


