

Spring 2022

INTRODUCTION TO COMPUTER VISION

Atlas Wang Assistant Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin https://vita-group.github.io/

Many slides here were adapted from CMU 16-385

Camera Model

Pinhole and Lens

Pinhole camera a.k.a. camera obscura

Pinhole camera a.k.a. camera obscura

First mention ...

Chinese philosopher Mozi (470 to 390 BC) First camera ...

Greek philosopher Aristotle (384 to 322 BC)

Pinhole camera terms

Pinhole camera terms

What happens as we change the focal length?

What happens as we change the focal length?

Ideal pinhole has infinitesimally small size

• In practice that is impossible.

What happens as we change the pinhole diameter?

What happens as we change the pinhole diameter?

What happens as we change the pinhole diameter?

Extreme Case: Bare-sensor imaging

What does the image on the sensor look like?

All scene points contribute to all sensor pixels

Extreme Case: Bare-sensor imaging

All scene points contribute to all sensor pixels

What about light efficiency?

The lens camera

Lenses map "bundles" of rays from points on the scene to the sensor.

How does this mapping work exactly?

The pinhole camera

The lens camera

Central rays propagate in the same way for both models!

Important difference: focal length

In a pinhole camera, focal length is distance between aperture and sensor

Important difference: focal length

In a lens camera, focal length is distance where parallel rays intersect

Describing both lens and pinhole cameras

We can derive properties and descriptions that hold for both camera models if:

- We use only central rays.
- We assume the lens camera is in focus.
- We assume that the focus distance of the lens camera is equal to the focal length of the pinhole camera.

Remember: *focal length* f refers to different things for lens and pinhole cameras.

 In this lecture, we use it to refer to the aperture-sensor distance, as in the pinhole camera case.

Camera Matrix

The camera as a coordinate transformation

The camera as a coordinate transformation

The camera as a coordinate transformation

A camera is a mapping from:

the 3D world

homogeneous coordinates x = PX2D image camera 3D world point matrix point

to:

a 2D image

What are the dimensions of each variable?

The camera as a coordinate transformation

The pinhole camera

The (rearranged) pinhole camera

The (rearranged) pinhole camera

What is the equation for image coordinate **x** in terms of **X**?

The 2D view of the (rearranged) pinhole camera

What is the equation for image coordinate **x** in terms of **X**?

The 2D view of the (rearranged) pinhole camera

The (rearranged) pinhole camera

What is the camera matrix **P** for a pinhole camera?

 $\boldsymbol{x} = \mathbf{P}\mathbf{X}$

Homogeneous Coordinates

Given a point **p** in \mathbb{R}^2 , represented as $P = (p_1, p_2)$, i.e., the vector $\mathbf{p} = \begin{bmatrix} p_1 & p_2 \end{bmatrix}^T$ its homogeneous representation (using homogeneous coordinates) is

$$\tilde{\mathbf{p}} = \begin{bmatrix} \tilde{p}_1 & \tilde{p}_2 & \tilde{p}_3 \end{bmatrix}^\mathsf{T}$$
; with $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^\mathsf{T}$ not allowed

The vector representation is obtained dividing the first n homogeneous components by the (n + 1)-th, that is often called scale.

$$p_1= ilde{
ho}_1/ ilde{
ho}_3; \quad p_2= ilde{
ho}_2/ ilde{
ho}_3$$

Figure: Geometric interpretation of homogeneous coordinates.

Take-Away:

- All points, on the same projection ray, are mapped to the same homogeneous coordinate!
- It simplifies many equations in projective geometry! Let's see next page...

The pinhole camera matrix

Relationship from similar triangles:

$$[X \quad Y \quad Z]^T \to [X/Z \quad Y/Z]$$

General camera model in *homogeneous coordinates*:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ z \end{bmatrix}$$

What does the pinhole camera projection look like?

Normal coordinates:

$$\begin{bmatrix} x \\ y \end{bmatrix} \equiv \begin{bmatrix} X/Z \\ Y/Z \end{bmatrix}$$

Homogenous coordinates:

$$\begin{bmatrix} x \\ y \\ z(=1) \end{bmatrix}$$

The pinhole camera matrix

Relationship from similar triangles:

$$[X \quad Y \quad Z]^T \to [X/Z \quad Y/Z]$$

General camera model *in homogeneous coordinates*:

$$\begin{bmatrix} \chi \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

What does the pinhole camera projection look like?

The perspective projection matrix

$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Normal coordinates:

$$\begin{bmatrix} x \\ y \end{bmatrix} \equiv \begin{bmatrix} X/Z \\ Y/Z \end{bmatrix}$$

Homogenous coordinates:

$$\begin{bmatrix} x \\ y \\ z(=1) \end{bmatrix}$$

The pinhole camera matrix

Relationship from similar triangles:

$$\begin{bmatrix} X & Y & Z \end{bmatrix}^T \to \begin{bmatrix} X/Z & Y/Z \end{bmatrix}$$

General camera model *in homogeneous coordinates*:

$$egin{bmatrix} \chi \ y \ Z \end{bmatrix} &= egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} egin{bmatrix} X \ Y \ Z \ 1 \end{bmatrix}$$

What does the pinhole camera projection look like?

Perspective ion matrix
$$\mathbf{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} \mathbf{I} & | & \mathbf{0} \end{bmatrix}$$
 alternative way to write the same thing

The pe project

More general case: arbitrary focal length

What is the camera matrix **P** for a pinhole camera?

 $x = \mathbf{PX}$

More general (2D) case: arbitrary focal length yimage plane Х Yz

Z

What is the equation for image coordinate **x** in terms of **X**?

More general (2D) case: arbitrary focal length yimage plane Х YzZ $\begin{bmatrix} X & Y & Z \end{bmatrix}^\top \mapsto \begin{bmatrix} fX/Z & fY/Z \end{bmatrix}^\top$

The pinhole camera matrix for arbitrary focal length

Relationship from similar triangles:

$$\begin{bmatrix} X & Y & Z \end{bmatrix}^\top \mapsto \begin{bmatrix} fX/Z & fY/Z \end{bmatrix}^\top$$

General camera model *in homogeneous coordinates*:

$$egin{bmatrix} \chi \ y \ z \end{bmatrix} &= egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} egin{bmatrix} X \ Y \ Z \ 1 \end{bmatrix}$$

What does the pinhole camera projection look like?

$$\mathbf{P} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

In general, the camera and image have *different* coordinate systems.

In particular, the camera origin and image origin may be different:

How does the camera matrix change?

$$\mathbf{P} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

In particular, the camera origin and image origin may be different:

Camera matrix decomposition

We can decompose the camera matrix like this:

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

What does each part of the matrix represent?

Camera matrix decomposition

We can decompose the camera matrix like this:

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

(homogeneous) transformation from 2D to 2D, accounting for not unit focal length and origin shift (homogeneous) perspective projection from 3D to 2D, assuming image plane at z = 1 and shared camera/image origin

Also written as:
$$\mathbf{P} = \mathbf{K}[\mathbf{I}|\mathbf{0}]$$
 where $\mathbf{K} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix}$

In general, there are three, generally different, coordinate systems.

We need to know the transformations between them.

 $(\widetilde{X}_w - \widetilde{C})$

translate

 $R \cdot \left(\widetilde{X}_w - \widetilde{C}\right)$ translate rotate

Modeling the coordinate system transformation

In heterogeneous coordinates, we have:

$$\widetilde{\mathbf{X}}_{\mathbf{c}} = \mathbf{R} \cdot \left(\widetilde{\mathbf{X}}_{\mathbf{w}} - \widetilde{\mathbf{C}} \right)$$

How do we write this transformation in homogeneous coordinates?

Modeling the coordinate system transformation

In heterogeneous coordinates, we have:

$$\widetilde{\mathbf{X}}_{\mathbf{c}} = \mathbf{R} \cdot \left(\widetilde{\mathbf{X}}_{\mathbf{w}} - \widetilde{\mathbf{C}} \right)$$

In homogeneous coordinates, we have: (pay attention to R and C dimension!)

$$\begin{bmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{R}\mathbf{C} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} \quad \text{or} \quad \mathbf{X_c} = \begin{bmatrix} \mathbf{R} & -\mathbf{R}\tilde{\mathbf{C}} \\ \mathbf{0} & 1 \end{bmatrix} \mathbf{X_w}$$

Incorporating the transform in the camera matrix

The previous camera matrix is for homogeneous 3D coordinates in camera coordinate system:

$$\mathbf{x} = \mathbf{P}\mathbf{X}_{\mathbf{c}} = \mathbf{K}[\mathbf{I}|\mathbf{0}]\mathbf{X}_{\mathbf{c}}$$

We also just derived:

$$\mathbf{X}_{\mathbf{c}} = \begin{bmatrix} \mathbf{R} & -\mathbf{R}\tilde{\mathbf{C}} \\ \mathbf{0} & 1 \end{bmatrix} \mathbf{X}_{\mathbf{w}}$$

Putting it all together

We can write everything into a single projection:

$$\mathbf{x} = \mathbf{P}\mathbf{X}_{\mathbf{w}}$$

The camera matrix now looks like:

 $\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{R} & -\mathbf{R}\tilde{\mathbf{C}} \\ \mathbf{0} & 1 \end{bmatrix}$ *intrinsic parameters* (3 x 3): correspond to camera internals (image-to-image transformation) = transformation) = transformation = tr

Putting it all together

We can write everything into a single projection:

$$\mathbf{x} = \mathbf{P}\mathbf{X}_{\mathbf{w}}$$

The camera matrix now looks like:

General pinhole camera matrix $\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$ $\mathbf{P} = \left| \begin{array}{ccccc} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{array} \right| \left| \begin{array}{ccccc} r_1 & r_2 & r_3 & t_1 \\ r_4 & r_5 & r_6 & t_2 \\ r_7 & r_8 & r_0 & t_2 \end{array} \right|$ intrinsic extrinsic parameters parameters $\mathbf{R} = \left| \begin{array}{ccc} r_1 & r_2 & r_3 \\ r_4 & r_5 & r_6 \\ r_7 & r_2 & r_2 \end{array} \right| \qquad \mathbf{t} = \left| \begin{array}{c} t_1 \\ t_2 \\ t_2 \end{array} \right|$ 3D rotation 3D translation

Recap

Recap

Recap

Recap

Recap

intrinsics 3D rotation identity 3D translation

Quiz

The camera matrix relates what two quantities?

Quiz

The camera matrix relates what two quantities?

$x = \mathbf{P}\mathbf{X}$

homogeneous 3D points to 2D image points

Quiz

The camera matrix relates what two quantities?

$x = \mathbf{P}\mathbf{X}$

homogeneous 3D points to 2D image points

The camera matrix can be decomposed into?

Quiz

The camera matrix relates what two quantities?

$x = \mathbf{P}\mathbf{X}$

homogeneous 3D points to 2D image points

The camera matrix can be decomposed into?

$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$

intrinsic and extrinsic parameters

Geometric camera calibration (a.k.a. camera pose estimation)

Pose Estimation

Given a single image, estimate the exact position of the photographer

Geometric camera calibration

Given a set of matched points

 $\{\mathbf{X}_i, \boldsymbol{x}_i\}$

point in 3D point in the space image

and camera model

 $x = f(\mathbf{X}; p) = \mathbf{P}\mathbf{X}$

parameters

projection model Camera matrix

Find the (pose) estimate of

Mapping between 3D point and image points

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

What are the unknowns?

Mapping between 3D point and image points

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Heterogeneous coordinates

$$x' = rac{oldsymbol{p}_1^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}} \qquad y' = rac{oldsymbol{p}_2^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}}$$

(non-linear relation between coordinates) *How can we make these relations linear?*
How can we make these relations linear?

$$x' = rac{oldsymbol{p}_1^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}} \qquad y' = rac{oldsymbol{p}_2^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}}$$

Make them linear with algebraic manipulation...

$$oldsymbol{p}_2^ op oldsymbol{X} - oldsymbol{p}_3^ op oldsymbol{X} y' = 0$$

 $oldsymbol{p}_1^ op oldsymbol{X} - oldsymbol{p}_3^ op oldsymbol{X} x' = 0$

Now we can setup a system of linear equations with multiple point correspondences

$$oldsymbol{p}_2^{ op} oldsymbol{X} - oldsymbol{p}_3^{ op} oldsymbol{X} y' = 0$$

 $oldsymbol{p}_1^{ op} oldsymbol{X} - oldsymbol{p}_3^{ op} oldsymbol{X} x' = 0$

How do we proceed?

$$p_{2}^{\top} X - p_{3}^{\top} X y' = 0$$

$$p_{1}^{\top} X - p_{3}^{\top} X x' = 0$$
In matrix form ...
$$\begin{bmatrix} X^{\top} & \mathbf{0} & -x' X^{\top} \\ \mathbf{0} & X^{\top} & -y' X^{\top} \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \\ p_{3} \end{bmatrix} = \mathbf{0}$$

How do we proceed?

$$p_{2}^{\top}X - p_{3}^{\top}Xy' = 0$$

$$p_{1}^{\top}X - p_{3}^{\top}Xx' = 0$$
In matrix form ...
$$\begin{bmatrix} X^{\top} & \mathbf{0} & -x'X^{\top} \\ \mathbf{0} & X^{\top} & -y'X^{\top} \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \\ p_{3} \end{bmatrix} = \mathbf{0}$$
For N points ...
$$\begin{bmatrix} X_{1}^{\top} & \mathbf{0} & -x'X_{1}^{\top} \\ \mathbf{0} & X_{1}^{\top} & -y'X_{1}^{\top} \\ \vdots & \vdots & \vdots \\ X_{N}^{\top} & \mathbf{0} & -x'X_{N}^{\top} \\ \mathbf{0} & X_{N}^{\top} & -y'X_{N}^{\top} \end{bmatrix} \begin{bmatrix} p_{1} \\ p_{2} \\ p_{3} \end{bmatrix} = \mathbf{0}$$
Here

How do we solve this system?

Solve for camera matrix by

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \| \mathbf{A} \boldsymbol{x} \|^2$$
 subject to $\| \boldsymbol{x} \|^2 = 1$

$$\mathbf{A} = egin{bmatrix} oldsymbol{X}_1^{ op} & oldsymbol{0} & oldsymbol{X}_1^{ op} & -x'oldsymbol{X}_1^{ op} \ oldsymbol{0} & oldsymbol{X}_1^{ op} & -y'oldsymbol{X}_1^{ op} \ oldsymbol{\vdots} & oldsymbol{x} = egin{bmatrix} oldsymbol{p}_1 \ oldsymbol{p}_2 \ oldsymbol{p}_2 \ oldsymbol{p}_3 \end{bmatrix} & oldsymbol{x} = egin{bmatrix} oldsymbol{p}_1 \ oldsymbol{p}_2 \ oldsymbol{p}_3 \end{bmatrix}$$

Solve for camera matrix by

$$\hat{x} = \underset{x}{\operatorname{arg\,min}} \|\mathbf{A}x\|^2$$
 subject to $\|x\|^2 = 1$

$$\mathbf{A} = egin{bmatrix} oldsymbol{X}_1^{ op} & oldsymbol{0} & oldsymbol{X}_1^{ op} & -x'oldsymbol{X}_1^{ op} \ oldsymbol{0} & oldsymbol{X}_1^{ op} & -y'oldsymbol{X}_1^{ op} \ oldsymbol{\vdots} & oldsymbol{x} = egin{bmatrix} oldsymbol{p}_1 \ oldsymbol{p}_2 \ oldsymbol{p}_2 \ oldsymbol{p}_3 \end{bmatrix} \ oldsymbol{X} = egin{bmatrix} oldsymbol{p}_1 \ oldsymbol{p}_2 \ oldsymbol{p}_2 \ oldsymbol{p}_3 \end{bmatrix}$$

Solution **x** is the column of **V** corresponding to smallest singular value of

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$$

Solve for camera matrix by

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \| \mathbf{A} \boldsymbol{x} \|^2$$
 subject to $\| \boldsymbol{x} \|^2 = 1$

$$\mathbf{A} = \begin{bmatrix} \boldsymbol{X}_1^\top & \boldsymbol{0} & -x' \boldsymbol{X}_1^\top \\ \boldsymbol{0} & \boldsymbol{X}_1^\top & -y' \boldsymbol{X}_1^\top \\ \vdots & \vdots & \ddots \\ \boldsymbol{X}_N^\top & \boldsymbol{0} & -x' \boldsymbol{X}_N^\top \\ \boldsymbol{0} & \boldsymbol{X}_N^\top & -y' \boldsymbol{X}_N^\top \end{bmatrix} \qquad \qquad \boldsymbol{x} = \begin{bmatrix} \boldsymbol{p}_1 \\ \boldsymbol{p}_2 \\ \boldsymbol{p}_3 \end{bmatrix}$$

Equivalently, solution **x** is the Eigenvector corresponding to smallest Eigenvalue of

$$\mathbf{A}^{\top}\mathbf{A}$$

Now we have:
$$\mathbf{P} = \left[egin{array}{cccc} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

Are we done?

Almost there ...
$$\mathbf{P} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix}$$

How do you get the intrinsic and extrinsic parameters from the projection matrix?

$$\mathbf{P} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix}$$

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}]$$

$$egin{aligned} \mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \ &= \mathbf{K} [\mathbf{R} | - \mathbf{Rc}] \ &= [\mathbf{M} | - \mathbf{Mc}] \end{aligned}$$

$$f{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ f{P} = f{K}[f{R}|f{t}] \ = f{K}[f{R}|-f{Rc}] \ = [f{M}|-f{Mc}] \end{cases}$$

Find the camera center C

What is the projection of the camera center?

Find intrinsic **K** and rotation **R**

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \ = \mathbf{K} [\mathbf{R} | - \mathbf{Rc}] \ = [\mathbf{M} | - \mathbf{Mc}] \end{cases}$$

Find the camera center C

 $\mathbf{Pc} = \mathbf{0}$

How do we compute the camera center from this?

Find intrinsic **K** and rotation **R**

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \ = \mathbf{K} [\mathbf{R} | - \mathbf{Rc}] \ = [\mathbf{M} | - \mathbf{Mc}] \end{cases}$$

Find the camera center C

$\mathbf{P}\mathbf{c}=\mathbf{0}$

SVD of P!

c is the Eigenvector corresponding to smallest Eigenvalue

Find intrinsic **K** and rotation **R**

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}] \ = \mathbf{K}[\mathbf{R}|-\mathbf{Rc}] \ = [\mathbf{M}|-\mathbf{Mc}] \end{cases}$$

Find the camera center C

 $\mathbf{P}\mathbf{c}=\mathbf{0}$

SVD of P!

c is the Eigenvector corresponding to smallest Eigenvalue

Find intrinsic **K** and rotation **R**

 $\mathbf{M}=\mathbf{K}\mathbf{R}$

Any useful properties of K and R we can use?

$$f{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ f{P} = f{K}[f{R}|f{t}] \ = f{K}[f{R}|-f{Rc}] \ = [f{M}|-f{Mc}] \end{cases}$$

How do we find K and R?

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K} [\mathbf{R} | \mathbf{t}] \ = \mathbf{K} [\mathbf{R} | - \mathbf{Rc}] \ = [\mathbf{M} | - \mathbf{Mc}] \end{cases}$$

Find the camera center C

 $\mathbf{P}\mathbf{c}=\mathbf{0}$

SVD of P!

c is the Eigenvector corresponding to smallest Eigenvalue

Find intrinsic **K** and rotation **R**

$$\mathbf{M} = \mathbf{K}\mathbf{R}$$

QR decomposition

Geometric camera calibration

Given a set of matched points

 $\{\mathbf{X}_i, \boldsymbol{x}_i\}$

point in the

image

Where do we get these matched points from?

and camera model

 $x = f(\mathbf{X}; p) = \mathbf{P}\mathbf{X}$

parameters

projection model

point in 3D

space

Camera matrix

Find the (pose) estimate of

Calibration using a reference object

Place a known object in the scene:

- identify correspondences between image and scene
- compute mapping from scene to image

Issues:

- must know geometry very accurately
- must know 3D->2D correspondence

Geometric camera calibration

Advantages:

- Very simple to formulate.
- Analytical solution.

Disadvantages:

- Doesn't model radial distortion.
- Hard to impose constraints (e.g., known f).
- Doesn't minimize the correct error function.

For these reasons, nonlinear methods are preferred

- Define error function E between projected 3D points and image positions
 - E is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques

Known 2d image coords

Known 3d world locations

312,747 309,140 30,086 305.796 311.649 30.356 307.694 312.358 30.418 310.149 307.186 29.298 311.937 310.105 29.216 311.202 307.572 30.682 307,106 306,876 28,660 309.317 312.490 30.230 307.435 310.151 29.318 308.253 306.300 28.881 306.650 309.301 28.905 308.069 306.831 29.189 309.671 308.834 29.029 308.255 309.955 29.267 307.546 308.613 28.963 311.036 309.206 28.913 307.518 308.175 29.069 309.950 311.262 29.990 312.160 310.772 29.080 311.988 312.709 30.514

3D locations of planar marker features are known in advance

(0,0,0)

(0,0,0)

(10, 10, 0)

(10, 10, 0)

3D content prepared in advance

Simple AR program

- 1. Compute point correspondences (2D and AR tag)
- 2. Estimate the pose of the camera P
- 3. Project 3D content to image plane using P

More Advance Calibration using Multiple Views....

https://grandvisual.com/work/pepsi-max-bus-shelter/ (London, 2014)

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering