

Spring 2022

INTRODUCTION TO COMPUTER VISION

Atlas Wang Assistant Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin https://vita-group.github.io/

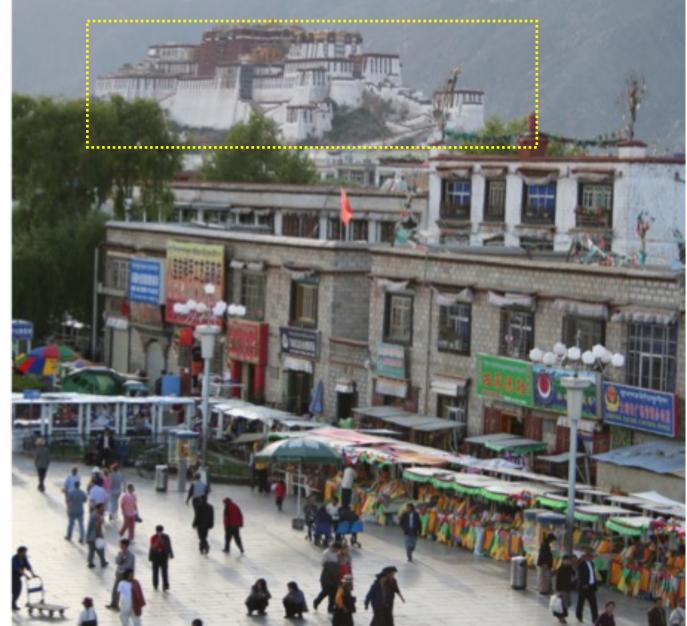
Many slides here were adapted from CMU 16-385

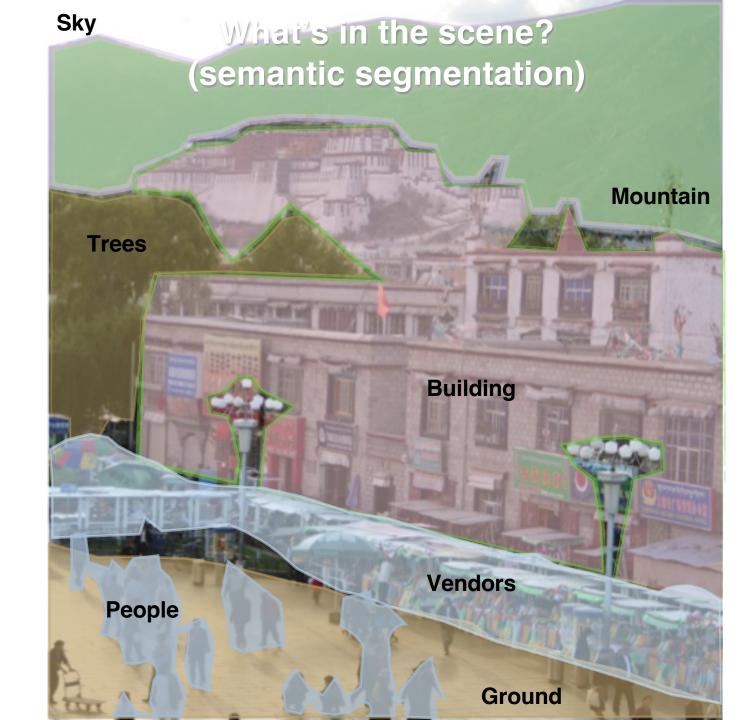
What do we mean by learningbased vision or "semantic vision"?

Is this a street light? (Recognition / classification)



Is that Potala palace? (Identification/Query)



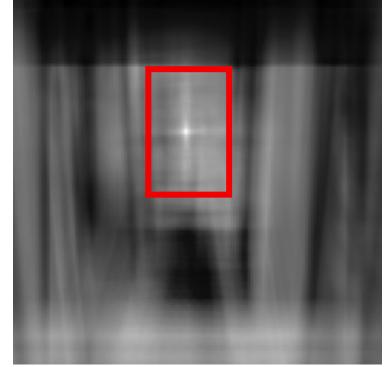


Activity / Event Recognition

Object recognition Is it really so hard?

Find the chair in this image

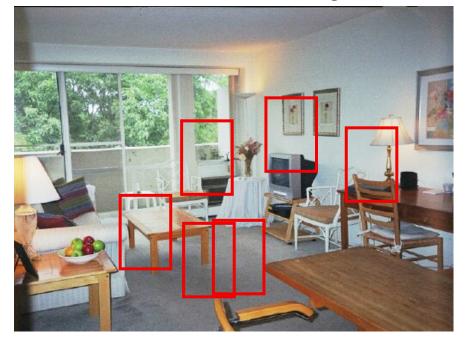
Output of normalized correlation

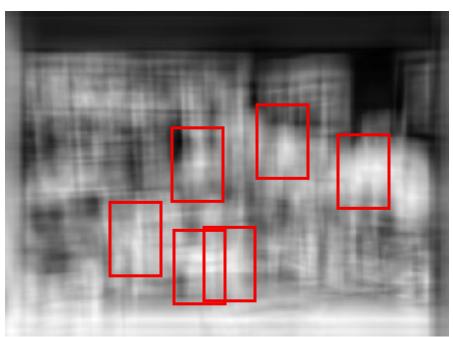


This is a chair

Object recognition Is it really so hard?

Find the chair in this image

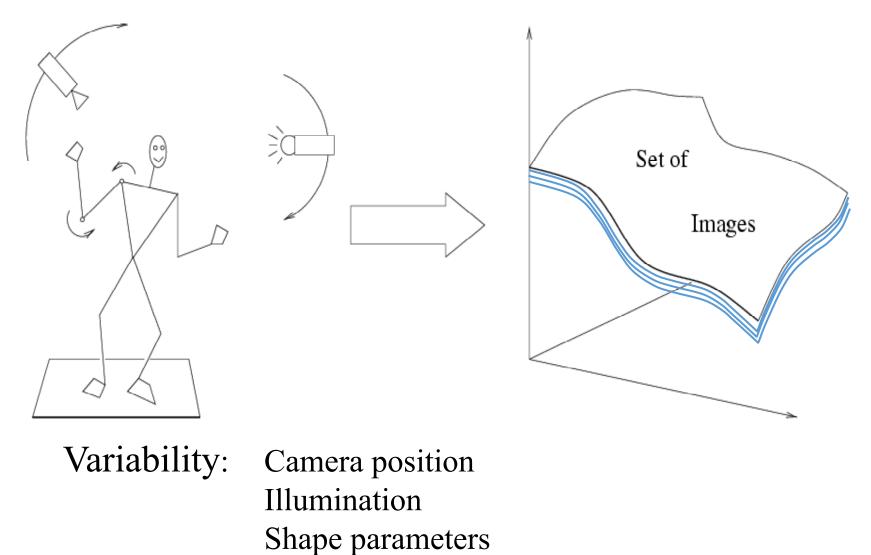




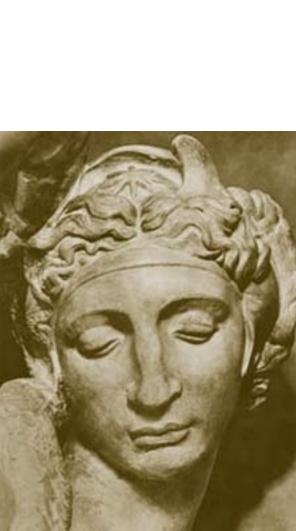
Pretty much garbage Simple template matching is not going to make it

A "popular method is that of template matching, by point to point correlation of a model pattern with the image pattern. These techniques are inadequate for three-dimensional scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation of parts." Nivatia & Binford, 1977.

Why is this hard?



Challenge: variable viewpoint



Michelangelo 1475-1564

Challenge: variable illumination

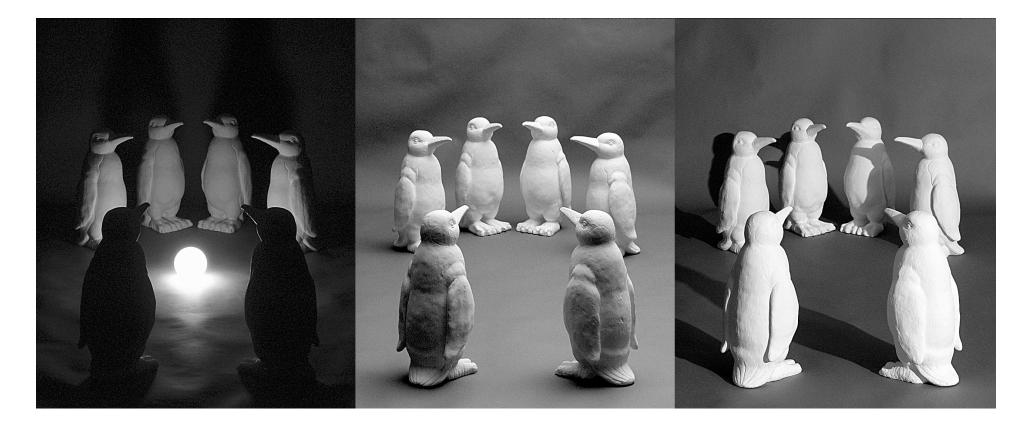


image credit: J. Koenderink

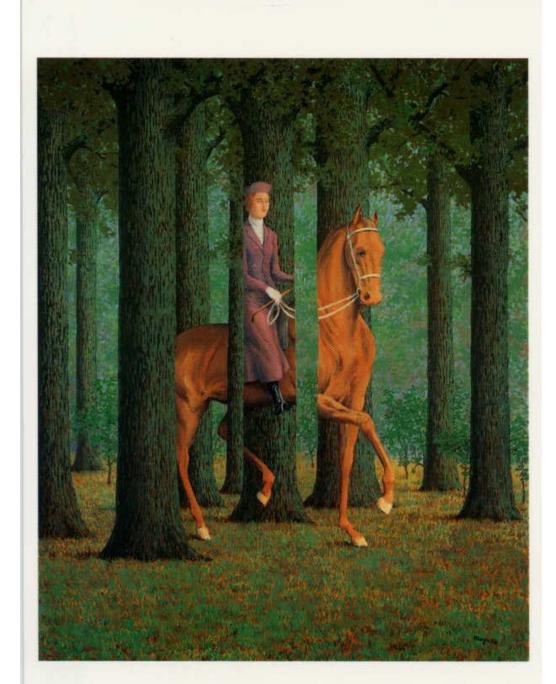
and small things from Apple. (Actual size)

Challenge: scale

Challenge: deformation

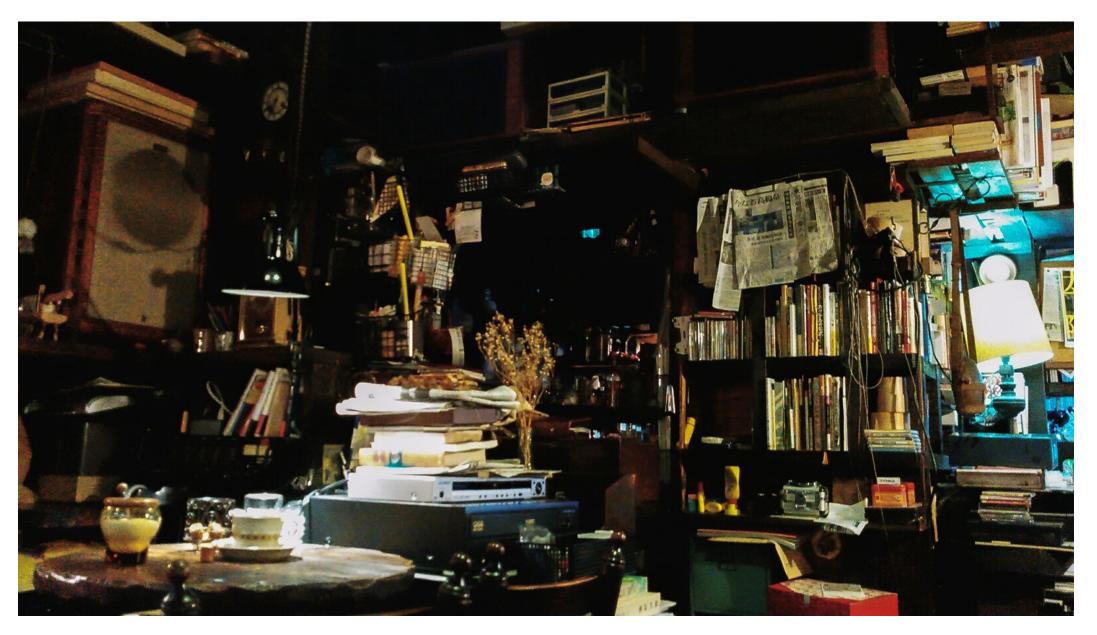
Deformation

Challenge: Occlusion



Magritte, 1957

Challenge: background clutter



Challenge: intra-class variations

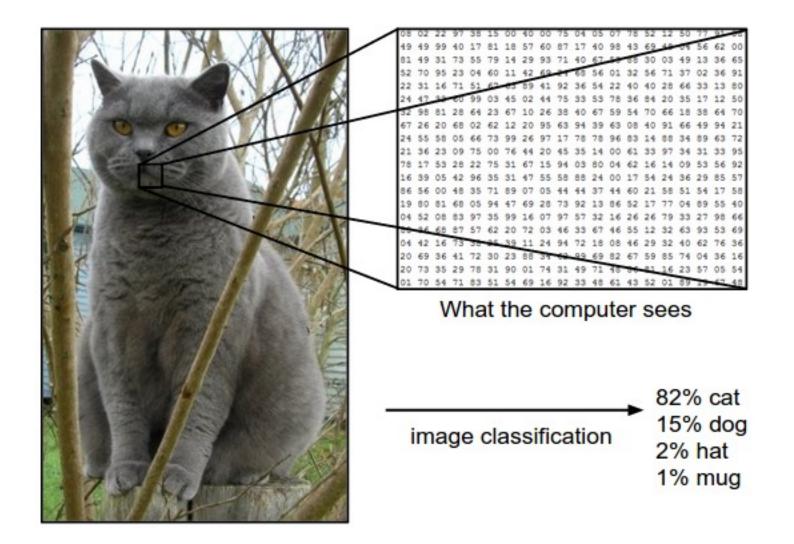
Svetlana Lazebnik

Image Classification

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat

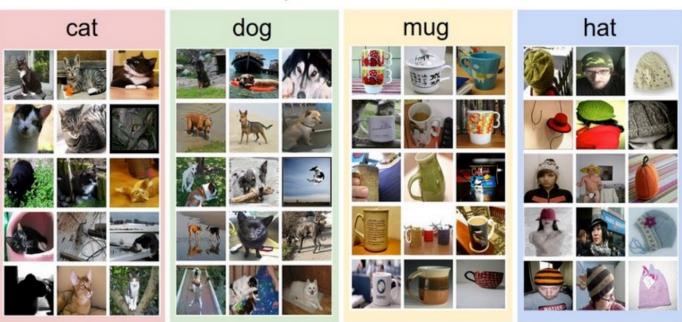
Image Classification: Problem



Data-driven approach

- Collect a database of images with labels
- Use ML to train an image classifier
- Evaluate the classifier on test images

Example training set

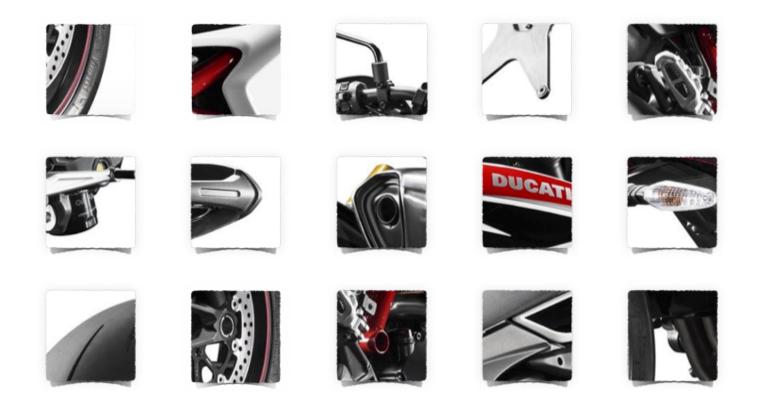


History of Image Classfication

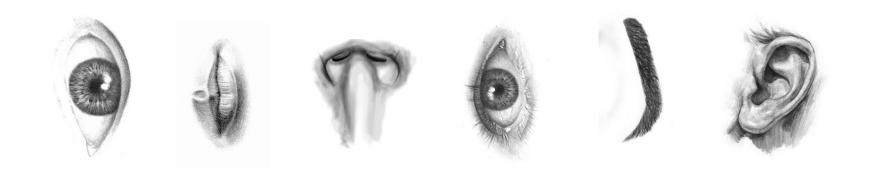
- 1960s –early 1990s: the geometric era
 - Recognition as an alignment problem: the simple "toy block" world ...
- 1990s: appearance-based models
 - PCA (eigenface), color histogram ...
- Mid-1990s: sliding window/template approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models
- Mid-2000s: bags of features (Today)
- *Present trends:* deep learning (we will get there)

Bag of words

What object do these parts belong to?

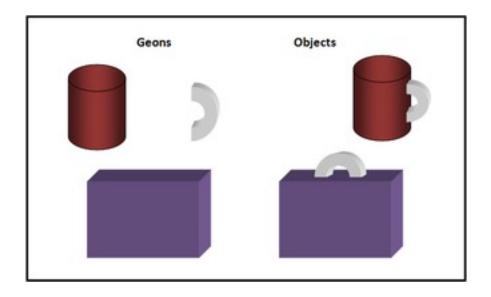


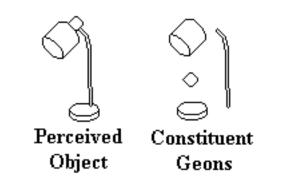
(not so) crazy assumption



spatial information of local features can be ignored for object recognition (i.e., verification)

Recognition-by-Components (RBC) Theory (1987)





- A human learning theory to explain object recognition
- According to RBC theory, we are able to recognize objects by separating them into geons (the object's main component parts).
- Geons are based on basic 3-dimensional shapes (cylinders, cones, etc.) that can be assembled in various arrangements to form a virtually unlimited number of objects.
- Very impactful for computer vision recognition!

Bag-of-features

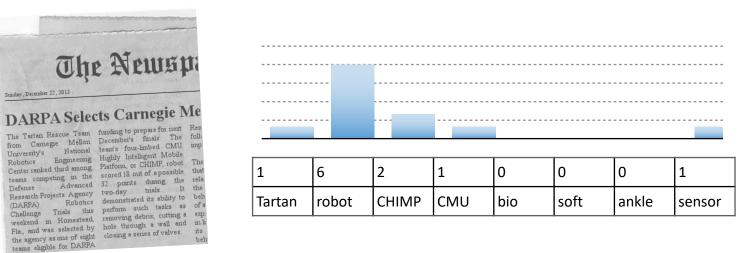
represent a data item (document, texture, image) as a histogram over features

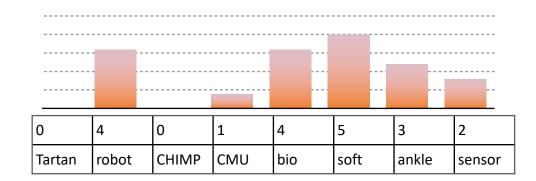
an old idea

(e.g., texture recognition and information retrieval)

Vector Space Model

G. Salton. 'Mathematics and Information Retrieval' Journal of Documentation, 1979





A document (datapoint) is a vector of counts over each word (feature)

$$m{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$
 , $n(v_{1,d})$ just a histogram over words

What is the similarity between two documents?

A document (datapoint) is a vector of counts over each word (feature)

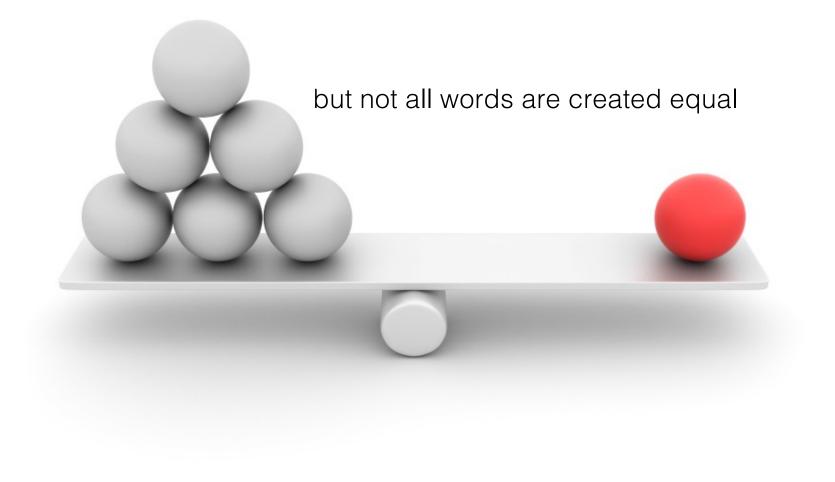
$$m{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

 $n(\cdot)$ counts the number of occurrences just a histogram over words

What is the similarity between two documents?

Use any distance you want but the cosine distance is fast.

$$egin{aligned} d(oldsymbol{v}_i,oldsymbol{v}_j) &= \cos heta \ &= rac{oldsymbol{v}_i \cdot oldsymbol{v}_j}{\|oldsymbol{v}_i\|\|oldsymbol{v}_j\|} & oldsymbol{v}_i \ &oldsymbol{ heta}_j & oldsymbol{v}_j \end{aligned}$$



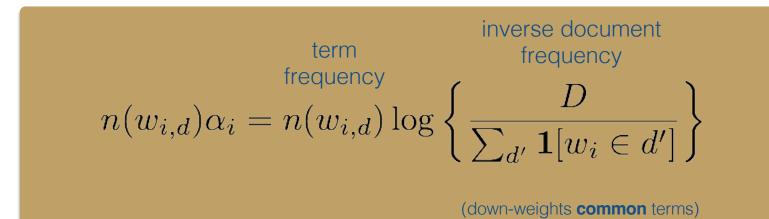
TF-IDF

Term Frequency Inverse Document Frequency

$$\boldsymbol{v}_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

weigh each word by a heuristic

$$\boldsymbol{v}_d = [n(w_{1,d})\alpha_1 \quad n(w_{2,d})\alpha_2 \quad \cdots \quad n(w_{T,d})\alpha_T]$$



Standard BOW pipeline (for image classification)

Dictionary Learning:

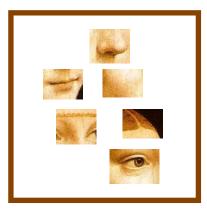
Learn Visual Words using clustering

Encode:

build Bags-of-Words (BOW) vectors for each image

Classify: Train and test data using BOWs

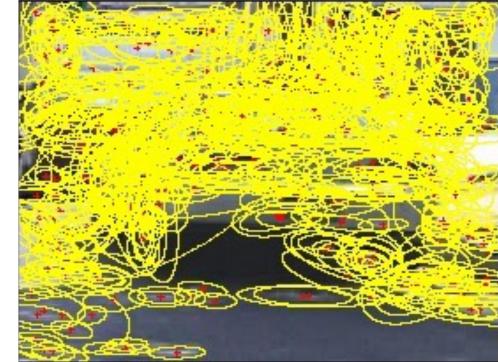
1. extract features (e.g., SIFT) from images

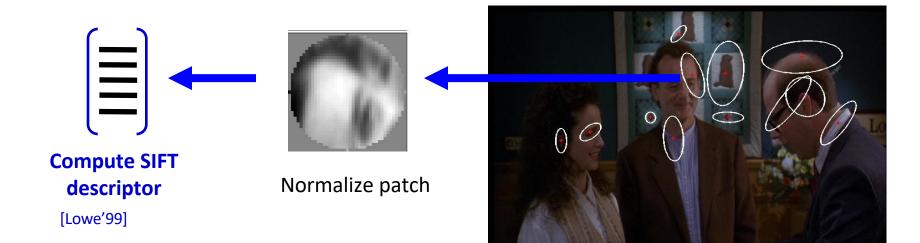


2. Learn visual dictionary (e.g., K-means clustering)

What kinds of features can we extract?

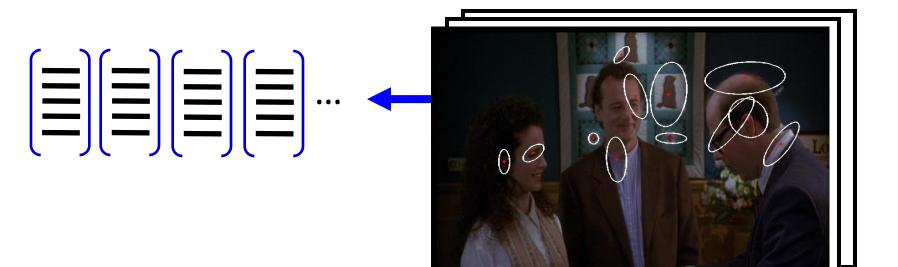
- Regular grid
 - Vogel & Schiele, 2003
 - Fei-Fei & Perona, 2005
- Interest point detector
 - Csurka et al. 2004
 - Fei-Fei & Perona, 2005
 - Sivic et al. 2005
- Other methods
 - Random sampling (Vidal-Naquet & Ullman, 2002)
 - Segmentation-based patches (Barnard et al. 2003)



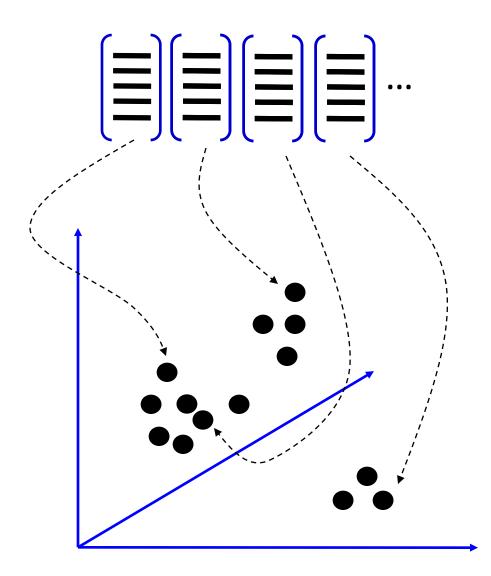


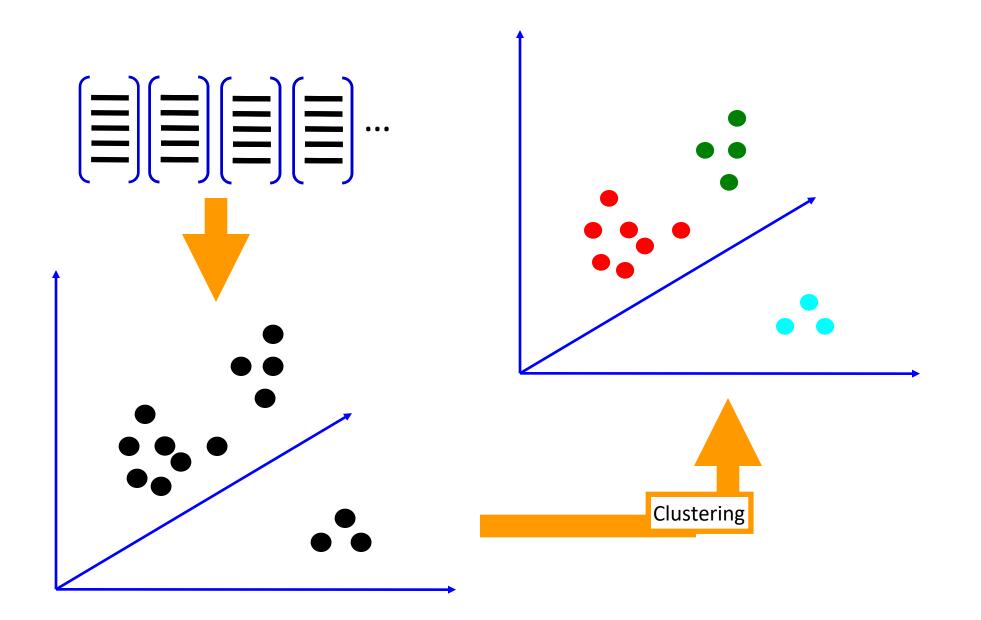
Detect patches

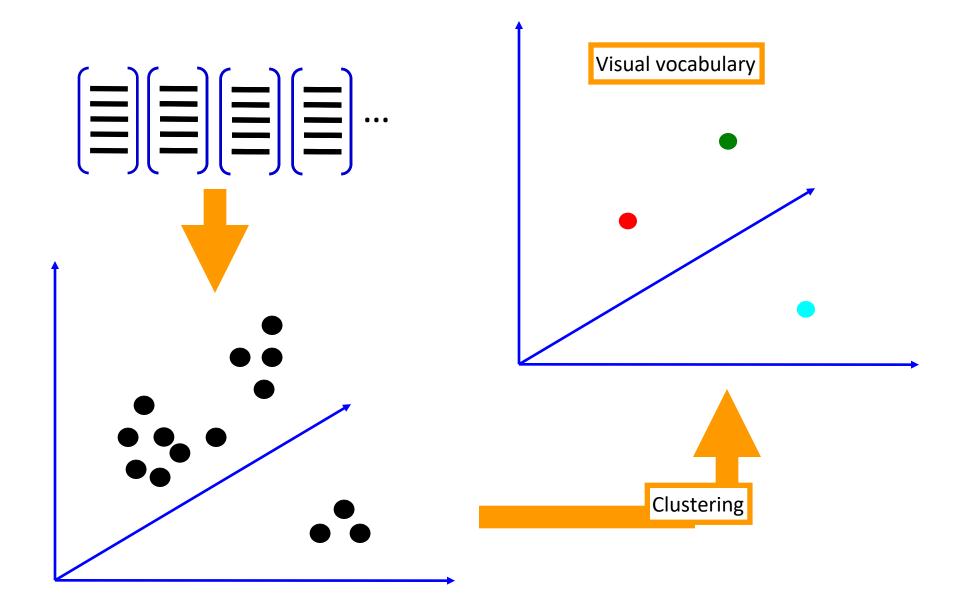
[Mikojaczyk and Schmid '02] [Mata, Chum, Urban & Pajdla, '02] [Sivic & Zisserman, '03]



How do we learn the dictionary?



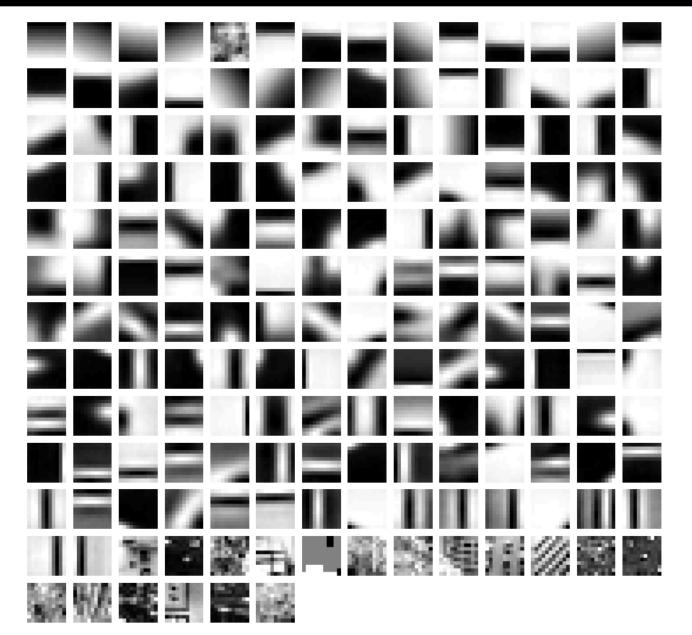




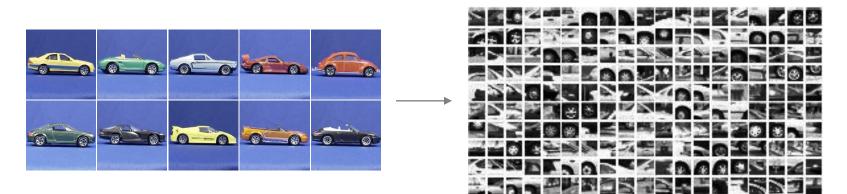
From what **data** should I learn the dictionary?

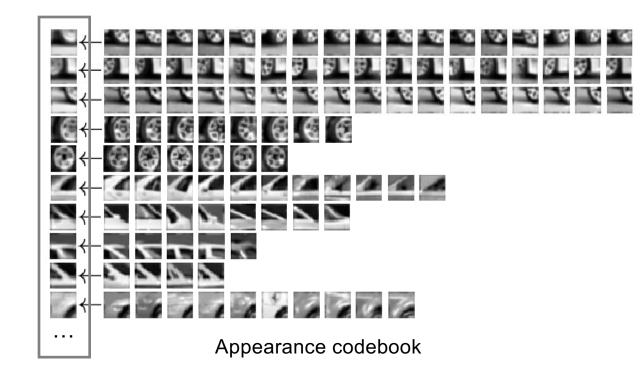
- Dictionary can be learned on separate training set
- Provided the training set is sufficiently representative, the dictionary will be "universal"

Example visual dictionary



Example dictionary



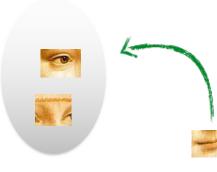


Another dictionary

Encode:

build Bags-of-Words (BOW) vectors for each image

Classify: Train and test data using BOWs



1. Quantization: image features gets associated to a visual word (nearest cluster center)

Encode:

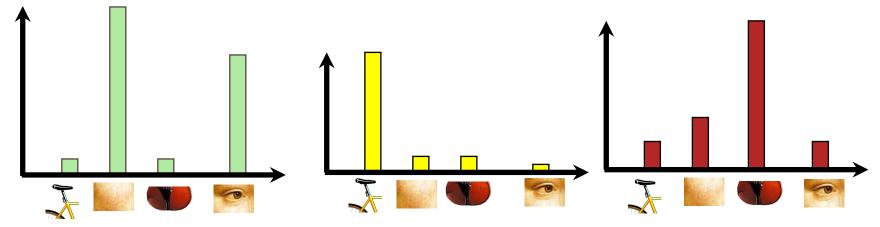
build Bags-of-Words (BOW) vectors for each image

Encode:

build Bags-of-Words (BOW) vectors

for each image

2. Histogram: count the number of visual word occurrences

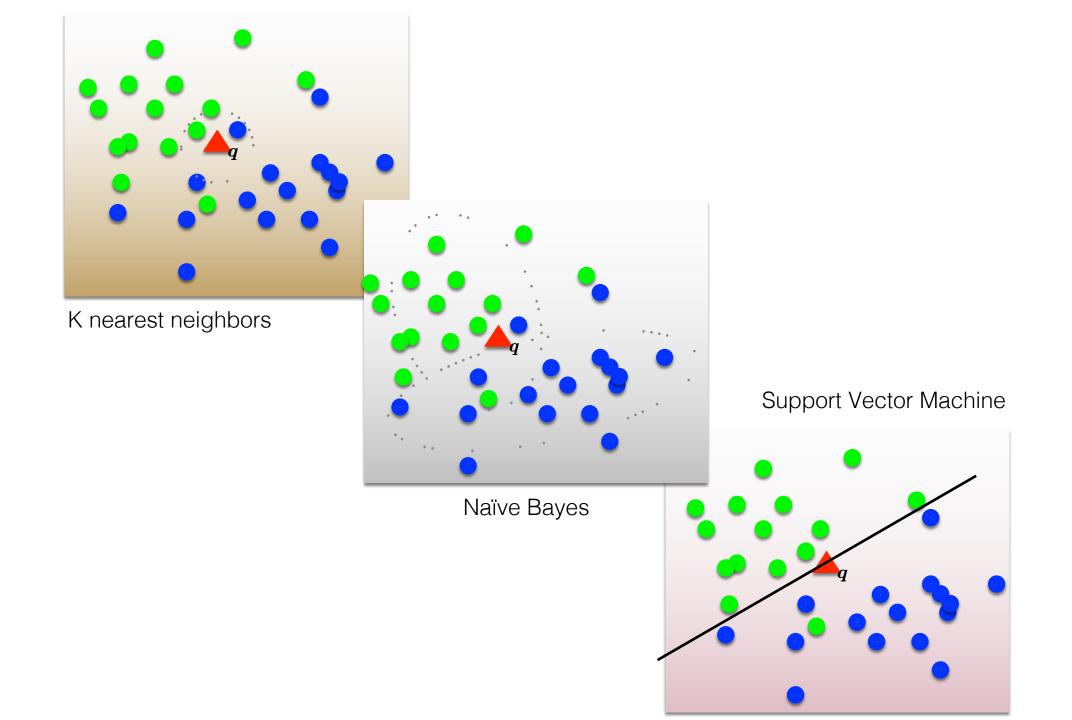


codewords

frequency

Encode: build Bags-of-Words (BOW) vectors for each image

Classify: Train and test data using BOWs



The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering