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T E X A S E L E C T R I C A L  A N D  C O M P U T E R  E N G I N E E R I N G

§We meet on MW 10:30am - noon (BUR 130) 

§ Do I have to come to the classroom, or can I audit?

§ After-class communication: Slack (link sent) – IMPORTANT!

§ Class materials are distributed on Course Webpage (NOT Canvas): https://vita-group.github.io/spring_23.html

§We do not follow any textbook closely. Instead, we have many “recommended materials”.

§ Instructor Office Hour: 11am – noon every Tuesday, at EER office 6.886

§ TA Office Hour: 4 - 5 pm every Thursday, at EER 3.854

§ Online Q&A: anytime, just ask on Slack!

Course Logistics

https://vita-group.github.io/fall_21.html


T E X A S E L E C T R I C A L  A N D  C O M P U T E R  E N G I N E E R I N G

§ Computer vision is a HUGE field. This class is designed to cover just “several drops” in the ocean,

focusing on the “hot and fresh” frontiers (e.g., I had to re-make 40-50% slides since its last offering)

§ Lectures are mixture of detailed techniques and high-level ideas.

§This class is NOT designed for pure “beginners”

§ We will speak technical language quickly from Day 1

§ You are assumed to already be familiar with: Linear Algebra, Convex Optimization, Probability & 

Stochastic Process, Image & Video Processing

§ You are assumed to know many basics about (but not an expert on): Digital Signal Processing,

Image & Video Processing, Machine Learning & Data Mining

Overview & Prerequisite



T E X A S E L E C T R I C A L  A N D  C O M P U T E R  E N G I N E E R I N G

A Few More Assumptions that I’ll make…

• You have some very basic understanding of Deep Learning

• e.g., you should have already heard about LeNet or AlexNet; have known what convolution or fully-
connected layers were; etc.

• A (perhaps) quantifiable self-check “baseline”: you already know how to do MNIST/CIFAR-10
classification, both theoretically and experimentally, using a convolutional neural network (CNN)

• You are comfortable with Python & PyTorch, and enjoy ”keeping hands dirty”

• Since this is a graduate-facing class, NO basic coding or data science “crush course” will be offered

• You are prepared to pay full attention to our intensive, fast-forwarding contents

• This field is developed at an unprecedentedly high pace, so will this class be



T E X A S E L E C T R I C A L  A N D  C O M P U T E R  E N G I N E E R I N G

Grading Policy

• Class Participation: 10% (what does this mean?)

• Mid-term exam: 20% (Time TBD)

• Final Project: 70%

• Progress report (15%) Due by the end of Week 8 (3/05 Sunday): 2-Page report, including project title,
team member, problem description, preliminary literature survey, the proposed technical plan, and references

• Presentation (20%): Be prepared to be challenged by your peers and the instructor

• Code review (15%): Write clean, well-documented and runnable codes, PLEASE

• Final Report (20%): (8+1)-page report following the standard CVPR paper template (and quality level)

• Template: http://cvpr2020.thecvf.com/sites/default/files/2019-09/cvpr2020AuthorKit.zip

http://cvpr2020.thecvf.com/sites/default/files/2019-09/cvpr2020AuthorKit.zip


T E X A S E L E C T R I C A L  A N D  C O M P U T E R  E N G I N E E R I N G

Project Guidance
• Teaming: we encourage 2-3 students to form a team, as you are expected to carry on a semester-long research 

project with substantial innovations. 

• Teams with more or fewer members may be well justified to be approved by the instructor

• You are encouraged to use the slack channel “project_team” to recruit teammates

• Each project team must be registered to and approved by the end of Week 7 (2/26 Sunday).

• A Google Sheet will be provided for team registration

• Topic: your choice, but must be relevant to computer vision

• What if I don’t have a specific idea now ? Talk to the instructor & the TA …

• Some good suggestions developed by TAs before: https://vita-group.github.io/Fall22/0901_project.pdf

• How to develop a good project timeline? How to write good project proposal and report? Any example or “template”?

https://vita-group.github.io/Fall22/0901_project.pdf


Feature learning: Going Deep
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Classical
Feature Learning Classifier

Prior Knowledge,
Domain Expertise

“Cat”?

Mid-level
Features

High-level
Features Classifier

More abstract feature representation

Train with BIG input & 
output, from end to end

Low-level
Features



Deep learning
• Learn a feature hierarchy all the way from raw inputs (e.g. pixels) to classifier

• Each layer extracts features from the output of previous layer

• Train all layers jointly



Status Quo
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Trends in the past decade:
n To build increasingly larger, deeper networks,

trained with more massive data, based on the
benefits of high-performance computing.

n Play with the connectivity and add “skips”





Grand Challenges
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n Why/how deep learning works? 
l In theory, many cases shouldn’t even work…

l Gap between engineering (or art) and science:
Lack of theoretical understandings &
guarantees, and analytical tools

l Training is computationally expensive and
difficult, relying on many “magics”

l No principled way to incorporate domain
expertise, or to interpret the model behaviors



image

feature map

From fully connected to convolutional networks

Convolutional layer

single set of 
weights

A filter of size F×F applied to an input 
containing C channels is a F×F×C volume that 
performs convolutions on an input of 
size I×I×C and produces an output feature map 
(also called activation map) of size O×O×1.

For more dimensionality check:
https://stanford.edu/~shervine/teaching/cs-
230/cheatsheet-convolutional-neural-networks

This input is only a 2D slice
(single channel)… what if the
input has multiple channels (3D)?

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks


Convolution as feature extraction

Input Feature Map
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Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Feature maps

Input Feature Map

.

.

.

Key operations in a CNN

Source: R. Fergus, Y. LeCun



How to Train: “Chain Rule”



LeNet-5

• 5 by 5 kernel

• Average pooling

• Sigmoid or tanh nonlinearity
• Fully connected layers at the end

• Trained on MNIST digit dataset with 60K training examples

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, 
Proc. IEEE 86(11): 2278–2324, 1998.

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf


AlexNet, 2012

• The FIRST winner deep model in computer vision, and one of the most classical choices for
domain experts to adapt for their applications

• 5 convolutional layers + 3 fully-connected layers + softmax classifier
• Three Key Design Features: ReLU, dropout, data augmentation



From Sigmoid to ReLU



Dropout

• Randomly select weights to update
• In each update step, randomly 

sample a different binary mask to all 
the input and hidden units

• Multiple the mask bits with the units 
and do the update as usual

• Typical dropout probability: 0.2 for 
input and 0.5 for hidden units

• Very useful for FC layers, less for conv
layers, not useful in RNNs



Data Augmentation

• Adding noise to the input: a special kind of augmentation
• Be careful about the transformation applied -> label preserving

• Example: classifying ‘b’ and ‘d’; ‘6’ and ‘9’



VGG-Net, 2014

Key Technical Features:
• Increase depth (up to 19)
• Smaller filter size (3)

Configurations D and E are
widely used for various tasks,
called VGG-16 and VGG-19



Deep Residual Network (ResNet), 2015

Key Technical Features: skip connections for residual mapping, up to > 1000 layers



Wide ResNet, 2016

• Widening of ResNet blocks (if done properly) provides a more effective way of improving 
performance of residual networks compared to increasing their depth.

• A wide 16-layer deep network has the same accuracy as a 1000-layer thin deep network 
and a comparable number of parameters, although being several times faster to train. 



ResNext, 2017
• Core idea: multi-path

• “Split-transform-merge”
strategy

• New notion of “cardinality”
(number of paths)

• ResNet could be viewed as
cardinality = 1

• Parameter-economic! Why?
• (Informal) essence: “less

function, more diversity”

Left #parameter: (256x1x1) x 64 + (64x3x3) x 64 + (64x1x1) x 64 = 69632
• 3.57% Top-5 error rate
Right #parameter: [(256x1x1) x 4 + (4x3x3) x 4 + (4x1x1) x 256] x 32 = 70144
• 3.03% Top-5 error rate



Densely Connected Convolutional Networks
(DenseNet), 2017

Key Technical Features:
• Finer combination of

multi-scale features (or
whatever…)



Next Chapter: What is beyond higher ImageNet accuracy?



Fully Convolutional Network (FCN), 2014

Key Technical Features:
• No fully-connected layer -> No fixed requirement on input size
• Widely adopted in pixel-to-pixel prediction tasks, e.g., image segmentation



U-Net, 2015
• The architecture consists of a 

contracting path to capture 
context

• …and a symmetric expanding 
path to enable precise 
localization.

• Also fully convolutional
• Very popular backbone for 

dense prediction (image 
segmentation, restoration…)



Spatial and Channel Attention
Channel
dimension
(number of
feature maps)

Feature map dimension
(H*W for each slice of 2D
feature map)



Depth-Wise Convolution

• Depthwise convolution is 
the channel-wise spatial 
convolution. 

• It is often used together
with pointwise convolution,
i.e., 1×1 convolution to 
change the channel
dimension (number of
feature maps)



MobileNet (v1)
• Single streamlined, very light-weight architecture
• Main idea: Depthwise Separable Convolutions
• Other ideas: Width Multiplier α for Thinner 

Models + Resolution Multiplier ρ for Reduced 
Representation



MobileNet (v2)
• Main idea: inverted residual structure 

• Adding residual connections between the narrow bottleneck layers (considerably 
more memory efficient - Why?)

• Non-linearities are removed in narrow layers to maintain representational power
• The intermediate expansion layer uses lightweight depthwise convolutions to 

filter features as a source of non-linearity



3D Convolutional Network (3D CNN), 2011

Key Technical Features:
• Going from 2D convolutional filters to 3D filters, to take temporal coherence into consideration



More Efficient Design?

• “Two-streams hypothesis” for human vision
• The dorsal stream involves in the guidance of actions and 

recognizing where objects are in space. It contains a 
detailed map of the visual field. and detects & analyzes
location movements

• The ventral stream is associated with object recognition 
and form representation. Also described as the “what” 
stream, it has strong connections to the dorsal stream
and other brain regions controlling memory or emotion

• Long story short: human brains use two
relatively independent systems to recognize
objects and to record temporal movements.



Two Stream Network, 2014



Slow-Fast Network, 2019
A state-of-the-art two-stream model with
• (i) a Slow pathway, operating at low frame rate, to capture spatial semantics
• (ii) a Fast pathway, operating at high frame rate, to capture motion at fine 

temporal resolution. 



Gradient Descent (GD)



Stochastic Gradient Descent (SGD)



GD versus SGD



Minibatch

• Potential Problem: Gradient estimates can be very noisy
• Obvious Solution: Use larger mini-batches (In theory, growingly larger)

• Advantage: Computation time per update does not depend on number of 
training examples.
• This allows convergence on extremely large datasets

• The larger MB size the better (only if you can)!!

“Large Scale Learning with Stochastic Gradient Descent”, Leon Bottou.



Momentum

• The Momentum method is a method 
to accelerate learning using SGD

• In particular SGD suffers in the 
following scenarios:

• Error surface has high curvature
• Small but consistent gradients
• Noisy gradients



Momentum



Adaptive Learning Rate Optimization

• Popular Solver Examples: AdGrad, RMSProp, Adam



Batch Normalization

• In ML, we assume future data will 
be drawn from same probability 
distribution as training data

• For a hidden layer, after training, 
the earlier layers have new 
weights and hence may generate 
a new distribution for the next
hidden layer

• We want to reduce this internal 
covariate shift for the benefit of 
later layers



Monitor Your
Training Curve



Beyond CNNs: Transformer for Vision?

• Towards a general, conceptual 
simple, and sufficiently versatile
architecture yet still achieving 
competitive performance for vision?

• The inductive bias of CNNs, e.g.,
spatially invariant and locality-based,
also may not be sufficient …



Basics: Transformer in NLP

- Standard model in NLP tasks
- Only consists of self-attention modules, instead of RNN
- Encoder-decoder
- Requires large dataset and high computational cost
- Pre-training and fine-tuning approaches : BERT & GPT



Basics: Self-Attention



Basics: Self-Attention



Basics: Self-Attention



DETR: End-to-End Object Detection with 
Transformers (ECCV’20)

• DETR directly predicts (in parallel) the final set of detections by combining a common CNN with a 
transformer architecture. It does NOT rely on the many hand-designed components like in FasterRCNN.

• The takeaway from DETR is bi-folds: 
• DETR achieved comparable performance to Faster R-CNN, but not on par with more recent detectors (especially on small 

objects), also requiring extra-long training schedule and auxiliary decoding losses
• DETR showed significant promise of generalizability, e.g., the same model easily applied to panoptic segmentation in a 

unified manner



GIF from https://github.com/lucidrains/vit-pytorch

“Pure Transformer”: Visual Transformer (ViT, ICLR’21)

https://github.com/lucidrains/vit-pytorch


Implementation

Learnable Position Embedding 
Epos ∈ R(N+1)×D

* to retain positional information

Trainable linear projection maps
xp ∈ RN×(P2·C)→ xpE ∈ RN×D

* Because Transformer uses constant 
widths, model dimension , through all of its layers

Image x ∈ RH×W×C→ A sequence of flattened 2D patches xp ∈ RN×(P2·C)

z0
L

https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit_pytorch.py#L99-L111



https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit_pytorch.py

Implementation



Implementation

https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit_pytorch.py

z ∈ RN×D : input sequence

Attention weight Aij : similarity btw qi,kj



Experiments
• Comparison to State of the Art



Experiments
• Pre-training Data Requirements

Larger Dataset Larger Dataset



Experiments
• Pre-training Data Requirements



DeIT: Data-efficient Image Transformers

• The first competitive convolution-free transformer 
by training on Imagenet only

• Trained using a teacher-student strategy specific to 
transformers

• It relies on a distillation token ensuring that the 
student learns from the teacher through 
attention.

• When using CNN as teacher, the distilled model 
outperforms its teacher in terms of the trade-off 
between accuracy and throughput



CvT: Convolutions into Vision Transformers

• Each stage starts with a convolutional token embedding that performs an 
overlapping convolution operation on a 2D-reshaped token map

• The linear projection prior to every self-attention block is replaced with a
depth-wise separable convolution as the projection



Swin Transformer (ICCV’21 best paper)

• Swin: hierarchical feature maps by merging image patches
• linear computation complexity to input image size due to computation of self-

attention only within each local window (using Shifted windows)



Swin Transformer: Pipeline Overview



Swin Transformer: Shifted Window



TimeSformer: ViT for Video



DINO: Self-Supervised Learning with ViTs

Source: https://ai.facebook.com/blog/dino-paws-computer-vision-with-self-supervised-transformers-and-10x-more-efficient-training/

https://ai.facebook.com/blog/dino-paws-computer-vision-with-self-supervised-transformers-and-10x-more-efficient-training/


DINO: Self-Supervised Learning with ViTs



Multi-Modality: Video-Audio-Text Transformer (VATT)



Ongoing Debate: ViTs Should Go More Complicated or Less?

• Adding “convolution-like” inductive
bias and structures
• Injecting convolution layers, pyramid
structure, dense connections, sliding
windows, multi-sized views or attention
windows …

• … Or just, keep it simple and
“universal”?
• Example: W. Chen et. al., “A Simple Single-

Scale Vision Transformer for Object Detection 
and Instance Segmentation”, ECCV 2022

• Someone goes even further: MLP-Mixer,
Conv-Mixer, Perceiver-IO…



Look Back: ConvNets

• Inductive biases

• Translation equivariance

• Shared computations

• Hierarchical feature maps

• Typical build: ”going deeper with small convolutions”

• Pros versus Cons?



7
5

Look Back: Vision Transformers

• Plain transformers outperform ResNets by a significant margin
• mostly on image classification, only recently on detection/segmentation

• Quadratic complexity with respect to the input size

• No hierarchical feature maps

No silver bullets! What is in-between ConvNets and ViTs?



• ConvNeXts compete favourably 
with Transformers on image 
classification.

• ConvNeXts outperforms Swin
Transformer on general 
computer vision tasks such as 
object detection and semantic 
segmentation.

ConvNeXt – 7x7



RepLKNet – 31x31

• Large Kernels + Structural Re-
parameterization

• Achieving comparable or superior 
results than Swin on ImageNet + a 
few downstream tasks.

31×31

Input

5×5

RepLKNet

＋



Sparse Large Kernel Network (SLaK)
Starting from ConvNeXt … Kernel size 51x51

• Increase the kernel size of stages to [51, 49, 47, 13] 

• Construct sparse decomposed kernels (sparsity=0.4, N=5 )

• Use sparse groups, expand model width to 1.3x




