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Neural Radiance Field

Given 100 views




Neural Radiance Field - Pipeline

Optimize a NeRF
model

Given a set of sparse views of an 3D reconstruction viewable
object with known camera poses from any angle




3D Reconstruction - Inverse Problem
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3D reconstruction is essentially solving an inverse problem!



An lllustrative Example: Computational Tomography

e InCT, the observations are CT slices
from different angles.

e The imaging formation is modeled as a
line integration (projection).

e \We solve a least-square problem to
recover CT images.

Rendering function:

R(V;0) = /V(x, y)6(x — cosfx + y — sinf)dzxdy



NeRF as an Inverse Imaging Problem
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Neural Radiance Field - Two Knobs

arg min
vV

/

1. Neural radiance 3D
scene representation

5D Input Output
Position + Direction Color + Density

2. Volume rendering
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C(r) =
Ray color | Transmittance || Density || Color

/tf T(t)o(r(t))c(r(t),d)dt, where T'(t) = exp

Position

Direction




Volumetric 3D Representation — Occupancy Field

Color voxel black if occupied by the object



Radiance Field

5D Input Output
Position + Direction Color + Density
2 (x,y,z,9,¢)—>|:||:||:|—>(RGBg)
./.)).' F(_) Ray:2
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* Each point will store a density value between [0, 1]
— How likely this point is occupied by the object

— The opacity of this point (consider glasses, petal)



Radiance Field

5D Input Output

Position + Direction Color + Density
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e Each voxel will also store an RGB value

— The color of the voxel



Voxel Representation
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Audio: vector Image: pixel array 3D: voxel array

What's the problem with vectorized signals?

Finite resolution!



Concept of Implicit Neural Representation

Toy problem: storing 2D image data

Usually we store an image as a
2D grid of RGB color values



Concept of Implicit Neural Representation

Toy problem: storing 2D image data

Fq
(x,7) —»III—» (r, 9, b)

What if we train a simple fully-connected
network (MLP) to do this instead?



More Examples

(b) Image regression  (c) 3D shape regression (d) MRI reconstruction (e) Inverse rendering

(z,y) — RGB (x,y,z) — occupancy (z,y,2z) —> density  (z,y,z) —> RGB, density



Naive Approaches Fail

RelLU Network

Groundtruth

(b) Image regression  (c) 3D shape regression  (d) MRI reconstruction (e) Inverse rendering

(z,y) > RGB (x,y,2) — occupancy (z,y,2) — density (z,y,z) — RGB, density



Solution I: Positional Encoding

Example mapping: “positional encoding”

e | |
sin(v), cos(v)
sin(2v), cos(2v)
sin(4v), cos(4v) _>III_> y

sin(2L71v), cos(2F v

Positional encoding

sin(x)




Solution Il: Sinusoidal Network (SIREN)

1. Simply replace the activation function with a
sinusoidal function

2. SIREN's derivatives are also a SIREN!
a) It can be used to solve differential equations

Sinusoidal
Network
ReLU (baseline)
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Neural Implicit Field in NeRF

(x, y,z,H ¢)—>III—>(r g, b,o )
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* Model the scene as a continuous mapping: (x,y, z) — (r,g,b,0)
— Parameterized by an MLP with position encoding

— We can also easily incorporate view angles as input to model view-
dependent effects! (z,4,2,0,4) = (r,9,b,0)



NeRF is yet another Differential System

A _ o (s) —1(s)1(s)

ds/ \

Emission Attenuation

1(D) = Ioexp(—jffr(t) dt)+ [Pg (s) exp(— [Pt () dt)a’s

Volume Rendering

C(r)= /t fT(t)a(r(t))c(r(t),d)dt, where T'(t) = exp(—/t a(r(s))ds)
/ LN N q

Ray color | Transmittance || Density || Color / \

Position | | Direction




Generate views with traditional volume rendering

Rendering model for ray r(t) = o + td:

N
O =iyl anc,
izzl ozc\

colors

weights

How much light is blocked earlier along ray:

1=l
T; = H(l — o)
g=1

How much light is contributed by ray segment i:

a; =1 — e 70



Two pass rendering: coarse

Ray
N

C~ TzOéz ;
i=1

treat weights as probability
distribution for new samples

3D volume

‘ Camera



Two pass rendering: fine

Ray

treat weights as probability 3D volume

distribution for new samples

Camera



Volume rendering is trivially differentiable

Rendering model for ray r(t) = o + td:

colors

weights

How much light is blocked earlier along ray:
i—1

How much light is contributed by ray segment i:

o; =— 1 — G_Giati

{differentiable w.r.t.

Ray

‘ Camera



Optimize with gradient descent on rendering loss
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TEXAS ELECTRICAL AND COMPUTER ENGINEERING

Towards Efficient NeRF

NeRF requires tedious per-scene optimization
« Training one scene equals to training a neural network!
« Usually requires one day.

Solution:
« Generalizable NeRF: reconstruct NeRF directly from images on the fly in a feedforward
manner
« Fast per-scene training: still follow per-scene optimization, but significantly accelerate
the optimization.
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Pixel-NeRF: On-the-fly NeRF Reconstruction

\ f Volume Rendering
Input View W

\l (z,d) — — (RGBo) /{\ \/\
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1. Learn an image encoder and a projector that map images to the feature volume on the fly
2. Decode the voxel feature to RGB + density
3. Call volume rendering to form images
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IBRNet: Image Based Rendering NeRF

[]Source view
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Volume Rendering
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Rendering Loss
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1.  Same with PixelNeRF: Learn mapping between images and the feature volume
2. Use transformer to decode voxel features on a ray jointly
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MVSNeRF: Multi-view Stereo Guided NeRF

>

z,d, f,c
(z,d, f,c) N!P (RGB, o) /\ I[ Source Views
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: Ray Direction
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Render Loss

f :Volume feature

€ :lmage color

-~
=

T : Density

a) Cost Volume b) Neural Encoding Volume c) Volume Renderer

Same with PixelNeRF: Learn mapping between images and the feature volume
Instead of using feature volume, MVSNeRF borrows cost volume from MVSNet
a) Cost volume estimates the stereo between views, which carries depth information
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Neural Light Field Rendering

I l l @ : Concatenate
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Light field rendering inspired rendering pipeline:

One pixel correspond to a
line on a neighboring view!

X
X,
)
29
X 3‘_02'.',-.
XL:.. """
0 e
Left view Right view

a) Search an epipolar line, and use transformer to extract epipolar line features

b) Use the second transformer to aggregate epipolar line features

c) Add light field coordinates to encode view dependence
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Generalizable Patch-Based Neural Rendering

roor One pixel correspond to a
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Patch Feature Encoder

Target Pixel

1. Similar to light field rendering, but:
1. Tokenize each image as patches: search correspondence with local windows
2. Add visual feature transformer to exchange visual information between potentially
corresponding patches on different reference images.



Generalizable NeRF Transformer (GNT)

Scene Representation Neural Rendering
) ) Photometric Loss
Epipolar Line
Cast Ray . Ray g |:| - I:l
View ”| Transformer 5 Pred GT 2
Transformer = red.
—
- e
:  Feature Encoder
I e = o=
: B\ & ] — —
s U 4  {=o=
H 4" | oo
e L] Gaceeeecesass g [us]
: Source Image L o— :
. Views Encoder mage: Pom :
Target Views Feature Embed

Source Views

1. Modeling "image -> feature volume" and "volume rendering" as two sequence functions!
a. View Transformer: aggregate multi-view images for scene representation
b. Ray Transformer: aggregate a sequence of points on a ray for ray-based rendering




View Transformer: Universal Scene Representation

1. Extract image features for each source view [E\A ] [
. . g 0 |
via an image encoder. i B/\& |i

2. Project 3D coordinates onto each source view Source Image
: . Views Encoder Image  Pos.
plane following epipolar geometry. Feature Embed

3. Interpolate the features of 2D projected point

iR i
©
A8 06 O

on the image plane. Epipolar Line () iz,
4. Feed collected image features as a sequence Cast Ray ——/_W B,
into the view transformer to output the 3D point Y e
features.
~—

4z

Source Views

F(z,0) = V(z,6;{L, -, In})

Target Views



Ray Transformer: Universal Volume Rendering Approximator

1. i(;::; : Ft)'laayni;o.r each pixel on the target B ),—\ Photometric Loss
2. Sample a sequence of points on the ray. = | Ray g ” —
3. Get per-point feature vector by view Smncner | Pred. ot 2
transformer W g
4. Aggregate the sequence of 3D point /\_/
feature by ray transformer.
5. Map the output feature to the RGB tuple.
_—
Target Views

C(r) = MLP o Mean o Ray-Transformer(F(o + t1d,0),--- ,F(o + t)d,0))



Videos on Challenging Scenes

(a) NeX (a) GNT (b) GT



Visualization of Depth

Cue depth from learned attention
weights from ray transformer.

GNT learns to physically ground its
attention maps, with no explicit depth
supervision
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Plenoxel: NeRF without Neural Networks

b3 029029 ®29 Spherical
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Training Sk :
e a) Sparse Voxel Grid b) Trilinear Interpolation d) Optimization Spherical Harmonics

1. Drop neural networks and directly use voxels for radiance field optimization
2. Model view dependency via spherical harmonics
3. Reconstruct NeRFs in minutes
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TensoRF: Tensorial Radiance Fields

o
= | W-g.tl}
Rendering loss

Ray Distance

1. Decompose voxels by tensor factorization

R, R,

§ : X YZ Y XZ Z XY E : § : m
ga = va,fr o Ma,r + Va,'r' © Ma,'r + vcr,'r ° Ma,'r' = Aa,'r

r=1 r=1meXYZ

2. Fast reconstruction in minutes.
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Instant Neural Graphics Primitives with Hash Encoding

1/N|‘

NV R W = O N R W= O

(1) Hashing of voxel vertices (2) Lookup  (3) Linear interpolation  (4) Concatenation (5) Neural network

Compress voxel representation with a hash table (O(1) complexity)
Put the small hash table into the GPU cache!

Use a tiny MLP to achieve view dependency

Fast reconstruction in seconds!

https://nvlabs.github.io/instant-ngp/



MipNeRF (ICCV'21): Multi-resolution NeRF

1. Considering a single ray as a cone,
each pixel value should be the
integral over the cone.

2. To simply the integral, integrating via
a Gaussian measure leads to a new
PE!

V(s E) = Exonp.,, =) [7(x)]
_ [sin(p,v) o exp(—(1/2) diag(ZW))]
cos(p.,) o exp(—(1/2) diag(Z,))

NeRF Mip-NeRF
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https://jonbarron.info/mipnerf/
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Beyond NeRFs:
Magics implemented with NeRF
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Outline:

- NeRF from Internet Images
- NeRF from few views(3-5)
- NeRF from single view

- NeRF editing



Neural Radiance Field - Pipeline

Optimize a NeRF
model

Given a set of sparse views of an 3D reconstruction viewable
object with known camera poses from any angle




Can we train a NeRF from this?
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NeRF in the wild (CVPR'21)

Figure 2: Example in-the-wild photographs from the Phototourism
dataset [ 1 3] used to train NeRF-W. Due to variable illumination and
post-processing (top), the same object’s color may vary from image
to image. In-the-wild photos may also contain transient occluding
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NeRF in the wild (CVPR'21)



https://nerf-w.github.io/
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Few-view NeRF: What if NeRF is trained with 3-5 viewpoints?

NeRF NeRF(depth) RegNeRF RegNeRF(depth)
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Main lIdea: Provide regularization on novel views

If NeRF is trained on available views only, the learned representation will
collapse (overfit).

But how to train on novel views?
There's no ground truth annotation.

Instead of providing exact pixel supervision,
We can guide the novel views with priors.




DSNeRF (CVPR'22): Depth Supervised NeRF
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https://www.cs.cmu.edu/~dsnerf/



https://ajayj.com/dietnerf/
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RegNeRF (CVPR'22): depth should be smooth

V‘ e Unobserved View
P 5 Vs ) Appearance Regularization
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< Unobserved Views


https://m-niemeyer.github.io/regnerf/index.html
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How to extend to single view setting?

- Cross scene fitting: Learn single view to 3D mapping using large

dataset. Works for category-level only.
E.g. Pixel-NeRF, LOL-NeRF

- Single scene fitting: Train with RGB(D) data and use additional priors
for novel view renderings. Works for in-the-wild images but object-
centric. e
E.g. SinNeRF, NeuralLift-360




EG3D (CVPR'22): 3D GAN to Generate Tri-planes
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https://nvlabs.github.io/eg3d/

EG3D (CVPR'22): 3D GAN to Generate Tri-planes

Latent
512 scalars
Mapping Intermediate latent, 512 scalars
Network
sl , Final image Irgg
B Tri-planes 512x512x3 StyleGAN2
£ Feature maps 3 images Features I¢ . . .
256x256x96 256x256x32 Neural Renderer 128x128x32 Discriminator
N\ \
F Tri-plane | Solorsy Volume '
1L - xiaz\ Decoder M Rendering Superres. § Real
S< < Fxz 32 T c|512x512x6 | L or
1 _Ql L Module S e
\ =2 T Fvza_ 7/ Raw image lzgg ‘
- 128x128x3
Y Upsample 512x512x3 g
StyleGAN2 Reshape ? ? g
Generator Camera params P S

25 scalars
Figure 4. Our 3D GAN framework comprises several parts: a pose-conditioned StyleGAN2-based feature generator and mapping net-
work, a tri-plane 3D representation with a lightweight feature decoder, a neural volume renderer, a super-resolution module, and a pose-
conditioned StyleGAN2 discriminator with dual discrimination. This architecture elegantly decouples feature generation and neural render-
ing, allowing the use of a powerful StyleGAN2 generator for 3D scene generalization. Moreover, the lightweight 3D tri-plane representation
is both expressive and efficient in enabling high-quality 3D-aware view synthesis in real-time.



LOL-NeRF (CVPR'22): Conditional NeRF Generator
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https://ubc-vision.github.io/lolnerf/

Pixel NeRF (CVPR'21): Using CNN to Extract Features

Volume Rendering

— (RGBo) /_\/\/\

Ray Distance

Input View
ANURS |

CNN Encoder Target View Rendering Loss

2



https://alexyu.net/pixelnerf/
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SinNeRF (ECCV'22): Training only on 1 reference view

Geometry Semantic
Pseudo Label Pseudo Label

Unseen Views

<

( (7') g, ba U)

A Y
- . - -, =

Reference
™ Depth

\\é/

Reference View

\
\ . 2
\ s ’
\ S
; ! Reference
Color

- Propagate depth information using warping
- Maintain semantic consistency using DINO-ViT and GAN


https://vita-group.github.io/SinNeRF/

Geometry Pseudo Label

How to propagate depth information to novel views?
Unproject 2D depth on reference view back into 3D points
Project 3D points to 2D depth on novel views

| AT

*e e,

P; = KunseenT(K_lz )

ref

L

Z




Semantic Pseudo Label

How to propagate RGB information?

Major contents should be similar between reference view and novel views
ViT has been proven to be an expressive semantic prior

The [CLS] token from ViT output is a global representation for the input

Ecls — ||fv1t(A) - fvit(B)||2

Here, A, B are patches from reference view and novel views



[CLS] token only works when seeing the overall scene

Red box and blue box don’t have
a similar [CLS] token

We have to cover the whole
scene, but rendering is expensive?
Strided Sampling

Sampling Stride = 1 Sampling Stride = 2 Sampling Stride = 4



Large stride get blurry results

but [CLS] loss doesn’t help when we reduce the stride
Adding a discriminator can help! (NeRF is the generator)

Lp = Eompyaa (@) [fD(—D(T(2)))] + Eznpz) [FD(D(T(G(2))))],
Lo = ]Ez~p(z) [fG(_D(T(G(z))))] 9
Ladv = Lp + Lg,

But there’s only real sample available?
T is differential augmentation that help data efficient GAN training
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DreamFields (CVPR'22)

Y

By &
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Image_text_loss = CLIP embedding similarity

—

Bouquest of flowers sitting in
a clear glass vase

!

image_text_loss



https://ajayj.com/dreamfields
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bouquet of flowers sitting in a clear glass vase.

.;‘ :> ‘CT Transmittance loss \ﬁmp \% \%&,
F, A 3

encouraging sparsity : gg
f 1 }’\ Tt
1Y |t vy
Transmittance e A= ©

a small green vase displays some small yellow blooms.

Neural Radiance Field

Augmented ECLIP a slug crawling on the ground around flower petals.
Rendering y N :
'1; | A AR /)i! ' ‘
.A. .‘ .‘ .gn [ 4 ¢ Pansc ] - . 2 -

Figure 1. Given a caption, we learn a Dream Field, a continuous volumetric Figure 2. Example Dream Fields rendered from four
representation of an object’s geometry and appearance learned with guidance perspectives. On the right, we show transmittance from
from a pre-trained model. We optimize the Dream Field by rendering images the final perspective. We create diverse outputs using
of the object from random camera poses that are scored with frozen pre- ¢ compositionality of language; these captions from
trained image and text encoders trained on web images and alt-text. 2D lfVISCOCO descnﬁli three ﬂowerdarra;ngements with dif-
views share the same underlying radiance field for consistent geometry. erent properties fike context and color.

Caption: “Washing blueberries” I:> S
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D ream F U SIO N ( IC LR'23) Bouquest of flowers sitting in

a clear glass vase

m %‘ ‘ image_text_loss

3
&

Image_text_loss = Score Distillation (Imagen)


https://dreamfusionpaper.github.io/
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Gradient of the distillation loss
A 0
VoLsps(6,x = 9(0)) 2 Eue |w(t) (Es(miyt) ) 5y
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Gradient of the distillation loss
VoLsps(d,x = g(0)) = Eyc |w(t) (€g(ze;y.t) —€) =5

m- 5

z4,t ~U(0,1)
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Gradient of the distillation loss
Vo Laps(,x = 6)) £ B |w(t) ol 1,1) — O
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Diffusion
Model ‘
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Gradient of the distillation loss

VoLsps(9,% = 9(8)) 2 Eq. [w<t> sy
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Gradient of the distillation loss

VoLsps(9,% = 9(8)) 2 Eq. [w<t> (eolas;y,8) — o g

m- R
..'X“’"'

Zt,tNu

o Diffusion
‘ Model ‘




TEXAS ELECTRICAL AND COMPUTER ENGINEERING

NeuralLift-360 (CVPR'23): image-to-3D in the wild

Volumetric
Rendering

rendered depth monocular depth

-.}, ;‘&, ¢ '..; '.',.:-".j.'
Noise [fsa bt iyl #2d Stable
Perturbation/ e 570 40 Diffusion
-3 w A > e
i A
5,.: 1
? 1
T 1
' CLIP
1
1

referencey | rendered RGB z denoised estimate


https://vita-group.github.io/NeuralLift-360/
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3D style transfer

Unified Implicit Neural Stylization
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INS (ECCV'22)
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Lcontsnt
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The main pipeline of unified implicit neural stylization (INS) framework and its components. We took NeRF with
the proposed INS, for example, it inputs with implicit coordinates alone with ray directions and style implicit
conditional code. Style Implicit Module (SIM) and Content Implicit Module (CIM) are used to extract conditional
implicit style features and implicit scene features. Amalgamate Module (AM) is applied to fuse features in the two
spaces. An implicit rendering step is applied on the top of AM(i.e. Volume rendering for NeRF, surface rendering
for SDF). VGG used to generate style supervision is omitted in this figure for simplicity.



INS (ECCV’22)
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NeRF [53] Style Image NeRF+INS NeRF+INS NeRF+INS NeRF+INS


https://zhiwenfan.github.io/INS



https://instruct-nerf2nerf.github.io/
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Original "Turn the bear into a panda”
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Summary

* NeRF is a powerful 3D representation. Can be considered as a

container supporting various 3D applications.
* NeRF store 3D information in the MLP parameters, editing directly

is hard but we can edit via optimization.
* Training NeRF using one or few view is challenging but achievable

with various priors.

The Rising Field Welcomes YOU!
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