

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering

Spring 2023

ADVANCED TOPICS IN COMPUTER VISION

Atlas Wang Assistant Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin https://vita-group.github.io/

 $\bigcirc \nearrow \Box \Box \odot \bigcirc \bigcirc$

ML researchers like to go BIG

Big NNs seem to be more capable at everything...

....While the world prefers going TINY

Deep Learning on a Budget

- Three Top Concerns:
 - Storage and Memory
 - Speed or Latency
 - Energy Efficiency
- The three goals all pursue "light weight"
- ... but they are often not aligned*
- ... so need to consider all in implementation
- ... and for both Inference and Training
- Broad economic viability requires energy efficient A
- Energy efficiency of a brain is 100x better than current SOTA hardware!

* Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks, IEEE ISSCC 2016

Model Compression

- Training Phase:
 - The easiest way to extract a lot of knowledge from the training data is to learn many different models in parallel.
 - 3B: Big Data, Big Model, Big Ensemble
 - Imagenet: 1.2 million pictures in 1,000 categories.
 - AlexNet: ~ 240Mb, VGG16: ~550Mb
- Testing Phase:
 - Want small and specialist models.
 - Minimize the amount of computation and the memory footprint.
 - Real time prediction
 - Even able to run on mobile devices.

Two Main Streams

- "Transfer": How to transfer knowledge from big general model (teacher) to small specialist models (student)?
 - Example: "Distilling the Knowledge in a Neural Network", G. Hinton et. al., 2015
- "Compress": How to reduce the size of the same model, during or after training, without losing much accuracy.
 - Example: "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", S. Han et. al., 2016
- **Comparison:** Knowledge Transfer provides a way to train a <u>new small model</u> inheriting from big general models, while Deep Compression Directly does the surgery on big models, using a pipeline: pruning, quantization & Huffman coding.

Knowledge Transfer/"Distillation": Main Idea

- Introduce "Soft targets" as one way to transfer the knowledge from big models.
 - Classifiers built from a softmax function have a great deal more information contained in them than just a classifier;
 - The correlations in the softmax outputs are very informative.

- Hard Target: the ground truth label (one-hot vector)
 - Soft Target: $q_i = \frac{exp(z_i/T)}{\sum_j exp(z_j/T)}$ T is "temperature", z is logit
 - More information in soft targets

cow 0	dog 1	cat O	car 0	original hard targets		
cow	dog	cat	car	softened output		
.05	.3	.2	.005	of ensemble		

Hinton's Observation: If we can extract the knowledge from the data using very big models or ensembles of models, it is quite easy to distill most of it into a much smaller model for deployment.

More follow-up observations: teachers can be weak, or even the same as student ...

Deep Compression: Main Idea (i)

Pruning

Deep Compression: Main Idea (ii)

Retrain to Recover Accuracy

Network pruning can save 9x to 13x parameters without drop in accuracy

Weight Sharing (Trained Quantization)

Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom)

Deep Compression: Main Idea (iii)

Deep Compression: Main Idea (iv)

Huffman Coding

More About Pruning

- Determining **low-saliency parameters**, given a pre-trained network
- Follows the framework proposed by LeCun et al. (1990):
 - 1. Train a deep model until convergence
 - 2. Delete "unimportant" connections w.r.t. a certain criteria
 - 3. Re-train the network
 - 4. Iterate to step 2, or stop

- Defining which connection is unimportant can vary
 - Weight magnitudes (L², L¹, ...)
 - Mean activation [Molchanov et al., 2016]
 - Avg. % of Zeros (APoZ) [Hu et al., 2016]
 - Low entropy activation [Luo et al., 2017]
 - ...

Human Brain Prunes too!

This image is in the public domain

Newborn

1000 Trillion Synapses

This image is in the public domain

1 year old

500 Trillion Synapses

This image is in the public domain

Optimal Brain Damage (OBD)

- Network pruning **perturbs weights W** by **zeroing** some of them
- How the loss L would be changed when W is perturbed?
- **OBD** approximates *L* by the 2nd order Taylor series:

$$\delta L \simeq \underbrace{\sum_{i} \frac{\partial L}{\partial w_{i}} \delta w_{i}}_{\text{1st order}} + \underbrace{\frac{1}{2} \sum_{i} \frac{\partial^{2} L}{\partial w_{i}^{2}} \delta w_{i}^{2} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} L}{\partial w_{i} \partial w_{j}} \delta w_{i} \delta w_{j}}_{\text{2nd order}} + O(||\delta \mathbf{W}||^{3})$$
Problem: Computing $H = \left(\frac{\partial L}{\partial w_{i} \partial w_{j}}\right)_{i,j}$ is usually intractable

• Requires $O(n^2)$ on **# weights**

٠

- Neural networks usually have enormous number of weights
 - e.g. AlexNet: **60M** parameters \Rightarrow *H* consists \approx **3**. **6** \times **10**¹⁵ elements

Optimal Brain Damage (OBD)

- Problem: Computing $H = \left(\frac{\partial L}{\partial w_i \partial w_j}\right)_{i,j}$ is usually intractable
- Two additional assumptions for tractability
 - **1. Diagonal** approximation: $H = \frac{\partial^2 L}{\partial w_i \partial w_j} = 0$ if $i \neq j$
 - **2. Extremal** assumption: $\frac{\partial L}{\partial w_i} = 0 \quad \forall i$
 - W would be in a local minima if it's pre-trained
- Now we get: $\delta L \simeq \frac{1}{2} \sum_{i} \frac{\partial^2 L}{\partial w_i^2} \delta w_i^2 + O(||\delta \mathbf{W}||^3)$ • It only needs $\operatorname{diag}(H) \coloneqq \left(\frac{\partial^2 L}{\partial w_i^2}\right)_i$
- diag(H) can be computed in O(n), allowing a backprop-like algorithm
 - For details, see [LeCun et al., 1987]

Optimal Brain Damage (OBD)

• How the loss L would be changed when W is perturbed?

$$L(\delta \mathbf{W}) \simeq \frac{1}{2} \sum_{i} \frac{\partial^2 L}{\partial w_i^2} \delta w_i^2 \eqqcolon \sum_{i} \frac{1}{2} h_{ii} \delta w_i^2$$

- The saliency for each weight $\Rightarrow s_i \coloneqq \frac{1}{2}h_{ii}|w_i|^2$ $s_i \coloneqq |w_i|$
- OBD shows robustness on pruning compared to magnitude-based deletion
- After re-training, the original test accuracy is recovered

Structured Sparsity

- "Un-structured" weight-level pruning may not engage a practical speed-up
 - Despite of extremely high sparsity, actual speed-ups in GPU is limited

Non-structured sparsity (poor data pattern)

ಬೈಕ್ ಸ್ಟಾಲ್ ಬೈ ಕ್ ಎಲ್ಲೊಟ್ಟೇ ಪ್ರಸ್ಥೆ	1. A cirkingen als opening — Billion of Marshall and M	し、生になる (1999年) (1997年) しょうしん
and the second	· · · · · · · · · · · · · · · · · · ·	and the second sec
a man and the second se	The second se	and the second of the second s
The second secon	The second secon	and a second state of the second s
Man and a second s	ACCOUNT OF A BURNEL AND THE ACCOUNTS	The Alexandration of the Alexandration
the second se		
and the second sec	THE REAL PROPERTY AND ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDR	and the second sec

Structured sparsity (regular data pattern)

		10.0	***		1111	1. 1. T. 1.	和日本語	201112	12	STORE STORE		 1111	-			業別に				-	201010
		1.1111	120	1 (************************************	12100-001		Er 1984)	States 14		T III I III III III IIII I IIII IIII T III I IIIIIIII		 11111111		41 5555	100001		10.000	A		1	ATT COMMON
1					a.,	 				1993	0										 10.00

5× speedup after concatenation of nonzero rows and columns

Structured sparsity can be induced by adding group-lasso regularization

$$\min_{\mathbf{W}} \mathcal{L}(\mathbf{W}) + \lambda \sum_{l=1}^{L} R_g(\mathbf{W}^{(l)}), \ R_g(\mathbf{w}) = \sum_{g=1}^{G} \|\mathbf{w}^{(g)}\|_2$$

• Filter-wise and channel-wise: # filters # channels $R_g(\mathbf{W}^{(l)}) = \sum_{n_l=1}^{N_l} \|\mathbf{W}_{n_l,:,:,:}^{(l)}\|_2 + \sum_{c_l=1}^{C_l} \|\mathbf{W}_{:,c_l,:,:}^{(l)}\|_2$

Table 1: Results after penalizing unimportant filters and channels in LeNet

LeNet #	Error	Filter # §	Channel # §	FLOP §	Speedup §
1 (baseline)	$0.9\% \\ 0.8\% \\ 1.0\%$	20—50	1-20	100%—100%	$1.00 \times -1.00 \times$
2		5—19	1-4	25%—7.6%	$1.64 \times -5.23 \times$
3		3—12	1-3	15%—3.6%	$1.99 \times -7.44 \times$

[§]In the order of *conv1*—*conv2*

Structured sparsity

Figure 7: Overview of structural sparsification schedules.

Sparsity beyond post-training compression

• Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., & Peste, A. (2021). Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res., 22(241), 1-124.

Lottery Ticket Hypothesis

The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network contains a subnetwork that is initialized such that—when trained in isolation—it can match the test accuracy of the original network after training for at most the same number of iterations.

- Winning Ticket gives
 - Better or same results
 - Shorter or same training time
 - Notably fewer parameters
 - Is trainable from the beginning

Frankle, Jonathan, and Michael Carbin. "The lottery ticket hypothesis: Finding sparse, trainable neural networks." ICLR 2019

Searching for Tickets: Iterative Magnitude Pruning

Lottery Ticket Hypothesis

Summary of Pruning

Sparsity distribution. The simplest is "uniform" - every layer has the same sparsity. More advanced ones work better, e.g., bigger layers are pruned

Update schedule. Sparsification happens at a certain frequency during training (btw, sparse training usually costs more epochs to converge)

- **Drop criterion**. The weights with the **lowest magnitude** are dropped.
- Grow criterion. The weights receiving the highest gradient will be re-added (zero-init). The number grown connections is the same as the dropped.

(4) Grow

Evci, Utku, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. "Rigging the lottery: Making all tickets winners." ICML 2020

Figure 1: Dynamic sparse training changes connectivity during training to aid optimization.

Training

"Sparsity", in broader terms

• Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., & Peste, A. (2021). Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks. J. Mach. Learn. Res., 22(241), 1-124.

More About Quantization

- Neural networks can be even binarized (+1 or -1)
 - DNNs trained to use binary weights and binary activations
- Expensive **32-bit MAC** (Multiply-**AC**cumulate) ⇒ Cheap **1-bit XNOR-Count**

Binarized weights

Binary Neural Networks

- Idea: Training real-valued nets (W_r) treating binarization (W_b) as noise
 - Training W_r is done by stochastic gradient descent
- **Binarization** $(W_r \rightarrow W_b)$ occurs for each forward propagation
 - On each of weights: $W_b = \operatorname{sign}(W_r)$
 - ... also on each **activation**: $a_b = sign(a_r)$
- Gradients for W_r is estimated from $\frac{\partial L}{\partial W_h}$ [Bengio et al., 2013]
 - "Straight-through estimator": Ignore the binarization during backward!

$$\frac{\partial L}{\partial W_r} = \frac{\partial L}{\partial W_b} \underline{\mathbf{1}_{|W_r| \le 1}}$$
$$\frac{\partial L}{\partial a_r} = \frac{\partial L}{\partial a_b} \underline{\mathbf{1}_{|a_r| \le 1}}$$

- Cancelling gradients for better performance
 - When the value is too large

Binary Neural Networks

- BNN yields **32x less memory** compared to the baseline 32-bit DNNs
 - ... also expected to reduce energy consumption drastically

• 23x faster on kernel execution times

- BNN allows us to use XNOR kernels
- 3.4x faster than cuBLAS

Operation	MUL	ADD
8bit Integer	0.2pJ	0.03pJ
32bit Integer	3.1pJ	0.1pJ
16bit Floating Point	1.1pJ	0.4pJ
32tbit Floating Point	3.7pJ	0.9pJ

• BNN achieves comparable error rates over existing DNNs

Dynamic Inference

Real-World Efficient ML: Way to Go

- Jointly utilizing several compression means
 - Also, can choose efficient "by-design" models (MobileNets, or even non-deep models, etc.)
 - Channel pruning is in fact very similar to NAS
- Data processing is often a key concern, maybe more important
- Hardware co-design is another key concern
- Resource constraints & user demands often change over time
- From single task to multi-task and lifelong learning ...

Demo: Energy-Efficient UAV-Based Text Spotting System

- Task: UAV-based low-energy video understanding (<u>Raspberry Pi 3B+</u>)
- Our group has been leading the show!
 - 2021 IEEE Low-Power Computer Vision (LPCV) Challenge, 1st prize (video track) among 31 university & company teams that submitted 249 independent solutions
 - 2020 IEEE Low-Power Computer Vision (LPCV) Challenge, 2nd prize (video track), among ~ 90 solutions

2020 Low-Power Computer Vision Challenge

From Efficient Inference to Efficient Training

Two type of demands dominate:

- "Personalization" (or adaptation, continual learning) at the edge (resource-constrained device): saving communication bandwidth /energy & protecting data privacy etc.
 - Mostly fine-tuning (new unseen data, etc.)
- "Scaling up" bigger models at the data center (resource-rich cloud server), while keep relatively affordable training budget & suppressing carbon footprint, etc.
 - Both training from scratch, and transfer learning (new task type, new data, etc.)

Edge-based Training: Lessons from Efficient Inference?

• Training v.s. Inference: one-pass feedforward v.s. iterative forward + backward

• Lessons that we learned from Inference:

- Model parameters are not born equally, and many redundancies do exist
- *Know your specific goal:* saving memory, latency and energy are often not aligned
- To achieve energy goal, realistic energy models and/or hardware measurements are very helpful
- Consider a more "end-to-end" effort beyond just the model itself (data, hardware, architecture...)
- New Challenges posed for Training:
 - Saving per-sample (mini-batch) complexity (both feed-forward and backward)
 - The empirical convergence (how many iterations needed) matters more than per-MB complexity
 - Data access/movement bottlenecks are (even more) crucial

E2-Train: Energy-Efficient CNN Training (NeurIPS'19)

Motivation:

"Three-Pronged" Approach:

- Data-Level: stochastic mini-batch dropping
- Layer-Level: selective layer update
- **Bit-Level:** predictive sign gradient descent

Data-Level: SMD

Bit-level: PSG

Datasets	Models	Accuracy (vs. Original One)	Energy Savings
CIFAR-10	MobileNetV2	92.06% (vs. 92.47%)	88%
	ResNet-110	93.01% (vs. 93.57%)	83%
CIFAR-100	MobileNetV2	71.61% (vs. 71.91%)	88%
	ResNet-110	71.63% (vs. 71.60%)	84%

Efficiently Scaling and Training from Scratch: Mixture of Experts (MoEs)

Introducing Pathways: A nextgeneration AI architecture

Too often, machine learning systems overspecialize at individual tasks, when they could e we're building Pathways—a new AI architecture that will handle many tasks at once, learn reflect a better understanding of the world.

: The Sparsely-Gated Mixture-of-Experts Google Senior Fellow and SVP, Google Research

Expert n-1

Oct 28, 2021

5 min read

Shazeer M. et. al. "Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts

MoE layer

 $G(x)_{2}$

MoE

layer

MoE

layer

G(x)_{n-1}

Expert 1

Expert 2

Expert 3

Gating Network

Why MoE?

- MoE is a special type of sparsity (dynamic, structured, end-to-end)
 - "Modalized" structure is naturally good for distributed training/parallelism
 - "Block-level" sparsity is hardware-friendly
 - "End-to-end" sparsity keeps the memory /compute low at any point of training
- MoE is also a special type of dynamic inference
 - Dynamically activate an "input-dependent" subnetwork for a new test sample
 - The activation is controlled by a **routing network** (top-*k* classifier, RL, hashing...)
- MoE can be straightforwardly extended to "divide and conquer"...
 - Multi-task learning
 - Multi-modality learning

Dense versus Sparse MoE Transformer

Fedus, William, Jeff Dean, and Barret Zoph. "A review of sparse expert models in deep learning." *arXiv preprint arXiv:2209.01667* (2022).

Schematic of Routing Network (using top-k as example)

Many open challenges remain on routing!

- Expert load balancing
- Representational Collapse
- "In-situ" change sparsity k?

•

...

Sparse Transfer Learning using Lottery Ticket Hypothesis (NeurIPS'20, ICLR'21, CVPR'21, ...)

Take Home Message: LTH can find you a good mask on pre-trained models (supervised or self-supervised), in NLP, CV and even multi-modality, so the sparse subnetwork is **the same transferrable**!

MIT News

Shrinking massive neural networks used to model language

SUBSCRIB

A new approach could lower computing costs and increase accessibility to state-of-the-art natural language processing.

Daniel Ackerman | MIT News Office December 1, 2020

LoRA: Low-Rank Fine-Tuning

Hu, Edward J., Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. "LoRA: Low-Rank Adaptation of Large Language Models." ICLR 2022 **Recent success**: fine-tune GenAl Text2Image Models! (<u>https://github.com/cloneofsimo/lora</u>)

The University of Texas at Austin Electrical and Computer Engineering Cockrell School of Engineering