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“Structure from Motion”

 Humans perceive the 3D structure in their environment by moving around it

* When the observer moves, objects around them move different amounts depending on their
distance from the observer.

e Even you stand still, most people have two eyes!

* Finding structure from motion presents a similar problem in stereo vision.

* Estimating three-dimensional structures from two-dimensional image sequences that may be
coupled with local motion signals

* Correspondence between images and reconstruction of 3D object needs to be found



Structure

Motion

Measurements
(scene geometry) (camera geometry)

Camera Callb.ratlo.n known estimate 3D to 2D
(a.k.a. pose estimation) correspondences

. . - 2D to 2D
TrlangUIatlon eStImate known correspondences

. Reco.nstruc.tlon estimate estimate 2D to 2D
(mc|udmg eplpolar) correspondences




Triangulation (Two-view geometry)

image 1 image 2

Given

: . : : /
camera 1 with matrix P camera 2 with matrix P



Create two points on the ray:

1) find the camera center; and

2) apply the pseudo-inverse of P on X.
Then connect the two points.

This procedure is called backprojection

Triangulation

How can you
compute this ray?

image 1 image 2

£r CU,

([ J
/ Which 3D points map

C to x?

: . : : /
camera 1 with matrix P camera 2 with matrix P



Triangulation

., Find 3D object point

Next Question: Will the lines intersect?
« Ideally, they should...

* Practically not, due to noise...

image 1 image 2

C Cl

. . . . /
camera 1 with matrix P camera 2 with matrix P



Triangulation

Given a set of (noisy) matched points

{mum }

and camera matrices

P.P

Estimate the 3D point

X



x =PX

known known

Can we compute X from a single
correspondence x?



x =PX

(homogeneous
coordinate)

This is a similarity relation because it involves homogeneous coordinates

x = aPX

(homogeneous coordinate
with a “scale”)

Question: why
not directly using
homogenous
coordinate here?

Same ray direction but differs by a scale factor

_ - _ - [ x
&L P1 P2 P3 P4 %
Yy — & | P55 Pe Pr D8 7
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How do we solve for unknowns in a similarity relation?
(e.g., how to remove the unknown scale?)



Linear algebra reminder: cross product

Vector (cross) product
takes two vectors and returns a vector perpendicular to both

c=aXxb a2b3—a3b2-
aXxXb= a3b1 —a1b3
i a1b2 — (lgbl il
b

cross product of two vectors in the
same direction is zero vector

axa=>_0

remember this!!!

|
-

c-a=>0 c-b



Linear algebra reminder: cross product

Cross product

aXxXb=

Can also be written as a matrix multiplication

axb=|alxb=

0 —dasg as
as 0 —an
— a9 aq 0

CL253 — a3b2
CL351 — Cllb3
CL1b2 — a261

Skew symmetric




Back to triangulation

X = aPX

Same direction but differs by a scale factor

How can we rewrite this using vector products?



X = aPX

Same direction but differs by a scale factor

XxXPX =0

Cross product of two vectors of same direction is zero
(this equality removes the scale factor)



Do the same after first
expanding out the
camera matrix and points
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Using the fact that the cross product should be zero

xXPX =0

yp3X Do ) X 0
X—a:pX = 0
93P2X yplx _O_

Third line is a linear combination of the first and second lines.
(x times the first line plus y times the second line)

One 2D to 3D point correspondence give yOLI equations



Using the fact that the cross product should be zero

xXPX =0

I yst pf{X 1 [o°
X—:ch — | 0
33P2X ?JP1X _0_

Third line is a linear combination of the first and second lines.
(x times the first line plus y times the second line)

One 2D to 3D point correspondence give you 2 equations
(That shows the inherent ambiguity ... every point on the ray is a solution!)
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yp3X | ) ) X
X—xp X

-

Remove third row, and ypg- — p;— O
rearrange as system on T T X —
unknowns pl — $p3 O

Now we can make a system of linear equations
(two lines for each 2D point correspondence)




Two rows from camera
one

Two rows from camera
two

I'T I T
 P1 — T P3

Concatenate the 2D points from both images

yps — Pa
pi — zpg
y'ps —ph'

X

sanity check! dimensions?

AX =0

How do we solve homogeneous linear system?

o O O O




Concatenate the 2D points from both images

ygsT — Pzi
pl o $p3 X
y'ps —ph'

pi' —a'ps

o O O O

AX =0

How do we solve homogeneous linear system?

S V D |




Epipolar geometry

p

/\

— T~

O O

Image plane

Assuming pinhole cameras, given one 2D point on the left image,
where is its counterpart on the right image, that is projected from the same 3D point?



Epipolar geometry

04——-_‘ B S I IH AR e SIS K B e AN AT b_gol

Baseline

Image plane

Just like we don’t know the actual 3D point, here we don’t know either camera center!
Let us just pretend to know them for now... and later they’ll become parameters we have to estimate



Epipolar geometry

/Z)\
4 € Baseline e

Image plane s Epipole
(projection of o’ on the image plane)



Epipolar geometry

p

Epipolar plane

O W e O i e e e CPmp T D / m—-—-’ol

Baseline e

Image plane s Epipole
(projection of o’ on the image plane)



Epipolar geometry

p

(intersection of Epipolar
plane and image plane)

/
/ Epipolar plane
L 4
) 4———;—5—-—-—————— — 1_—_-.74___-> o

K Baseline e
Image plane

Epipolar line »)

Epipole

(projection of o’ on the image plane)



Epipolar constraint

\

Potential matches for & lie on the epipolar line I~



The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image Right image

How would you do it?



The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

Left image Right image

Want to avoid search over entire image
Epipolar constraint reduces search to a single line



The epipolar constraint is an important concept for stereo vision

Task: Match point in left image to point in right image

i :
T E =
______

Left image Right image

Want to avoid search over entire image
Epipolar constraint reduces search to a single line

How do you compute the epipolar line?



Given a point in one image, multiplying by the essential matrix
will tell us the epipolar line in the second view.

The Essential Matrix is a 3 x 3 matrix that encodes epipolar geometry



Representing the ...

Epipolar Line

a
ar + by + c = 0 in vector form | = b

C

If the point & is on the epipolar line I then




, /
So if :L"Tl — () and ESL' — l, then

" Ex = ?

X




Where does the essential matrix come from?




Rt

' =R(x

Does this look familiar?



Rt~

I

Camera-camera transform just like world-camera transform



These three vectors are coplanar

z . t,x



/
If these three vectors are coplanar &, €, " then

-
txx)=20
a:ﬂ( Naz)

dot product of orthogonal vectors cross-product: vector orthogonal to plane



If these three vectors are coplanar &, &, 2’ then

(:c—t);_(t X x) =0

dot product of orthogonal vectors cross-product: vector orthogonal to plane



Putting it Together

rigid motion coplanarity

' =R(x —t) (x—t) (txx)=0

The outer product KmIT R) (t X m) — O‘ ROEGHONIMALIRAS

orthonormal

re-written as inn_er KmIT R) ( [t » ]m) — d (transpose = inverse!)
product (w/ matrix)!

A _ d

b (R[t X ] ) L — Associativity

‘\ (Sanity check:
T e - dimension?)

ssential Matrix
£Zr Em — O [Longuet-Higgins 1981]

(w/ vector) could be




Given a point in one image,
multiplying by the essential matrix will tell us
the epipolar line in the second view.

Assumption:
2D points expressed in camera coordinate system (i.e., intrinsic matrices are identities)



How do you generalize
to non-identity intrinsic
matrices?



The
fundamental matrix
IS a
generalization
of the
essential matrix,
where the assumption of
Identity matrices
IS removed



"B =0

The essential matrix operates on image points expressed in
2D coordinates expressed in the camera coordinate system

- —1

r — KLy r=K 'x
o camera image
point point




A, A
mTEm=O

The essential matrix operates on image points expressed in
2D coordinates expressed in the camera coordinate system

A . e —_— - 1
m’ — K, 1 ml Ca:mcera— K irge
point point

Writing out the epipolar constraint in terms of image coordinates

(K~ TEK Hx =0
T




Same equation works in image coordinates!

' "'Fx =0

It maps pixels to epipolar lines



Breaking down the fundamental matrix

F=K 'EK!
F=K  "[tRK!

Depends on both intrinsic and extrinsic parameters

Now recall. why Tsai's algorithm wants to decompose P .-)



Breaking down the fundamental matrix

F=K "EK!
F=K "t | RK!

Depends on both intrinsic and extrinsic parameters

How would you solve for F?

I'T _
z, Fx, =0



Assume you have M matched /mage points

{m, 2.} m=1,....M

Each correspondence should satistfy

I'T _
z, Fx, =0

How would you solve for the 3 x 3 F matrix?



Assume you have M matched /mage points (via Harris, Sl

{m, 2.} m=1,....M

Each correspondence should satistfy

I'T _
z, Fx, =0

How would you solve for the 3 x 3 F matrix?

S V. D




Assume you have M matched /mage points

{m, 2.} m=1,....M

Each correspondence should satistfy

I'T _
z, Fx, =0

How would you solve for the 3 x 3 F matrix?

Set up a homogeneous linear system with 9 unknowns



al —
z, Fx, =0

i fi f2 f3 | Lm
z, Y 1| fa fs S Ym | =0
fr fs fo || 1 |

How many equation do you get from one correspondence?



- f1
[mflm Y 1] fa
Wi

f2 f3-
fs Je

fs fo

ONE correspondence gives you ONE equation

Ty f1 + TmYr, f2 + T f3+
YT f4 + YmYm [5 + Ym fo+

x{mf7

y;nfs

fo=0



" fi fa fs
(2l v, 1) fa fs fo
i fs fo

Set up a homogeneous linear system with 9 unknowns

/ !/ / /
I1Tq I1Y1 I Y1 Y1Y1 U

!/ / !/ !/ / !/
TMEy TMYy TM O YMTy YMYy YM Ty Yy 1

zy oy 1

SVD !

h
f2
f3
fa
f5
fe
fz
fs

WL
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. epipolar |

Example




"~ —0.00310695 —0.0025646  2.96584
F = —0.028094 —0.00771621 56.3813

- 13.1905 —29.2007  —9999.79 |
" 343.53

r = | 221.70
1.0

! =Fx

- 0.0295
— 0.9996

| —265.1531




! =Fx

0.0295

9996

0
—265

1531
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8-point is sufficient in theory to estimate E/F...
but least square often not robust enough

= »

*\
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Example: solving for translation?

(t ty)

Problem: outliers A;-B, and As-Bs which incorrectly correspond

- (RANdom SAmple Consensus) :
RANSAC solution Fischler & Bolles in ‘81. x-B x-A

1. Sample a set of matching points (1 pair) 3 4
2. Solve for transformation parameters Vi Vi
3. Score parameters with number of inliers

4. Repeat steps 1-3 N times



RANSAC O

(RANdom SAmple Consensus) :

Fischler & Bolles in ‘81.

This data is noisy, but we expect a good fit
to a known model.



RANSAC ® ® 0
o ©
(RANdom SAmple Consensus) : ‘ ‘
Fischler & Bolles in ‘81. ” ‘
¢ »
o ©
@ ® 0
O O
O

Algorithm:

1. Sample (randomly) the number of points s required to fit the model
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC ® 0
o °. ®
Line fitting example “ O
© O
o ©
@ ® o
O .
.

Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

lllustration by Savarese



RANSAC

Line fitting example

Algorithm:
1. Sample (randomly) the number of points required to fit the model (s=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

Line fitting example

“Consensus set”

Algorithm:

1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



RANSAC

/
/
@
. "(// Nlnliers - 14
Algorithm: ,

1. Sample (randomly) the number of points required to fit the model (s=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence




Keep only the matches at are “inliers” with respect
to the “best” fundamental matrix (RANSAC)




RANSAC Summary
Good

* Robustto outliers, simple & assumption-free idea
 Applicable for large number of objective function parameters

« Optimization parameters are relatively easier to choose

Bad

« Computational time grows quickly with fraction of outliers and number of parameters
* Not good for getting multiple fits

Most common applications

 Estimating fundamental matrix (relating two views)
« Computing a homography (e.g., image stitching)



Recap: epipolar geometry & camera calibration

* |If we know the calibration matrices of the two cameras, we can estimate
the essential matrix;: E=KIFK

The essential matrix gives us the relative rotation and translation
between the cameras, or their extrinsic parameters.

Fundamental matrix lets us compute relationship up to scale for cameras
with unknown intrinsic calibrations.

Estimating the fundamental matrix is a kind of “weak calibration”



Depth and Camera

Ambient light sensor Speaker

Proximity sensor Microphone

Ricaiiy Microsoft Kinect v1
ood illuminator Front camera

Infrared camera Dot projector

1Phone X

Intel laptop depth camera



. a What’s different between these two images?









Objects that are close move more or less?



The amount of horizontal movement is
iInversely proportional to ...




The amount of horizontal movement is
iInversely proportional to ...

... the distance from the camera.

More formally...



X  3Dpoint

image plane

O O’

camera center camera center



image plane







(baseline)

b



How is X related to x?

(baseline)

b



(baseline)

b



(baseline)

b

How is X related to x’?



(baseline)

b



(baseline)

b

Disparity

d=x— 12

_bf
-z

(wrt to camera origin of image plane)



(baseline)

b
So, if | know x

. Disparity
and x’, | can

. / inversely proportional
d=r—T to depth

compute depth!! by
= 7/
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TS HON. ABRAIIAM LINCOLN, President of United States. %7—

1. Rectify 1mages
(make epipolar lines horizontal)
2.For each pixel
a.Find epipolar line
b.Scan line for best match «

c. Compute depth from disparity
b
z="
d

How would
you do this?
Template
Matching



Find this template

How do we detect the template & in the following image?

What will

the output
filter @8  template mean P

j / look like?

>k (glk, 1 — g)(f[m + k, n+1 — fmn)
Zkz glk,1] — 9)2Zkz [m—l—kn-l—l]—fmn))

/ocal patch mean

image

output

hlm, n|

Normalized cross-correlation (NCC).



Find this template

How do we detect the template & in the following image?

1-output

True detections

thresholding

Normalized cross-correlation (NCC).



Es(d) = Z V(d:p?dq)

smoothness term  (P,q) €E

& - set of neighboring pixels

How can we improve depth estimation? ° @« o9

Too many discontinuities. o4 ":I:*':Z:"

We expect disparity values to change slowly. ® ¢ o '»
4-connected 8-connected

| et's make an assum ptl on: neighborhood neighborhood

depth should change smoothly



Active stereo with structured light

e Project “structured” light patterns onto the object
e Simplifies the correspondence problem
* Allows us to use only one camera

camera

[+

projector

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured

Light and Multi-pass Dynamic Programming. 3DPVT 2002



http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/

Kinect: Structured infrared light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/



http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

iIPhone X

iPhone 12 has lidar



“Semantic” Depth Estimation

(b) Baseline Disparity Map (a) Input Image (b) Baseline Semantic Map

(c) SceneNet Semantic Map (d) SceneNet Disparity Map (c) SceneNet Disparity Map (d) SceneNet Semantic Map

“Towards Scene Understanding: Unsupervised Monocular Depth Estimation with Semantic-aware Representation”, CVPR'19
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