
Many slides here were adapted from Brown CSCI 1430

Recognition so far

Category:
– Is this a bedroom?
– What class of scene is this?
– Holistic features/quantization

Instance:
– Find this specific famous building.
– Find this person.
– Local features/precise correspondence
– Often within a database of images

“Image classification is not real computer
vision… so don’t be too obsessed with that”

Object (category) detection:
– Find all the people
– Find all the faces
– Often within a single image
– Often ‘sliding window’

Scenes have “stuff” – distribution of materials and surfaces
with arbitrary shape.

- Bag of Words ok!

Objects are “things” with shape, boundaries.
- Bag of Words less ok as spatial layout is lost!

Recognition so far

Object Category Detection
• Focus on object search: “Where is it?”
• Build templates that quickly differentiate object

patch from background patch

Object or
Non-Object?

James Hays

Object Detection Designchallenges
• How to efficiently search for likely objects

– Even simple models require searching hundreds of thousands of
positions and scales.

• Feature design and scoring
– How should appearance be modeled?
– What features correspond to the object?

• How to deal with different viewpoints?
– Often train different models for a few different viewpoints

General Process of Object Detection

Specify Object Model

Generate Hypotheses

Score Hypotheses

Resolve Detections

What are the object
parameters?

James Hays

Specifying anobject model

1. Statistical Template in Bounding Box
– Object is some (x,y,w,h) in image
– Features defined wrt bounding box coordinates

Image Template Visualization

Images from Felzenszwalb

Specifying anobject model

2. Articulated parts model
– Object is configuration of parts
– Each part is detectable

Images from Felzenszwalb

Specifying anobject model

3. Hybrid template/parts model
Detections

Template Visualization

Felzenszwalb et al. 2008

Specifying anobject model

4. 3D-ish model
• Object is collection of 3D planar patches

under affine transformation

Specifying anobject model

5. Deformable 3D model
• Object is a parameterized space of

shape/pose/deformation of class of 3D object

Loper et al. 2015

Why not just pick the most complexmodel?

• Inference is harder
– More parameters
– Harder to ‘fit’ (infer / optimize fit)
– Longer computation
– Need more in-domain prior knowledge

• “Bounding Box” is still practically the most popular

Specify Object Model

Generate Hypotheses

Score Hypotheses

Resolve Detections

Propose an alignment of the
model to the image

James Hays

General Process of Object Detection

Generating hypotheses
1. 2D template model / sliding window
– Test patch at each location and scale

Note – Template did not change size

Each window is separately classified

2. Voting from patches/keypoints

Interest Points
Matched Codebook

Entries
Probabilistic

Voting

3D Voting Space
(continuous)

Implicit Shape Model by Leibe et al.

Generating hypotheses

Specify Object Model

Generate Hypotheses

Score Hypotheses

Resolve Detections

Mainly gradient-based features,
usually based on summary
representation, many classifiers.

General Process of Object Detection

Specify Object Model

Generate Hypotheses

Score Hypotheses

Resolve Detections

General Process of Object Detection

“Globally ”rescore each proposed object
based on whole set, to resolve conflicts
(non-max suppression, context-reasoning…)

Influential Worksin Object Detection
• Sung-Poggio (1994, 1998) : ~2000 citations

– Basic idea of statistical template detection, bootstrapping to get “face-like”
negative examples, multiple whole-face prototypes (in 1994)

• Rowley-Baluja-Kanade (1996-1998) : ~3600
– “Parts” at fixed position, non-maxima suppression, simple cascade, rotation, pretty

good accuracy, fast
• Schneiderman-Kanade (1998-2000,2004) : ~1700

– Careful feature engineering, excellent results, cascade
• Viola-Jones (2001, 2004) : ~13,000

– Haar-like features, Adaboost as feature selection, hyper-cascade, very fast
• Dalal-Triggs(2005) : ~16,000 citations

– Careful feature engineering, excellent results, HOGfeature, online code
• Felzenszwalb-McAllester-Ramanan (2008): ~4,600 citations

– Template/parts-based blend
• Girshick et al. (2013): ~2000 citations

– R-CNN/ Fast R-CNN/ Faster R-CNN.Deep learned models on object proposals.

Evaluating a detector

Test image (previously unseen)

First detection ...

‘person’ detector predictions

0.9

Second detection ...

0.9

0.6

‘person’ detector predictions

Third detection ...

0.9

0.6

0.2

‘person’ detector predictions

Compare to ground truth

ground truth ‘person’ boxes

0.9

0.6

0.2

‘person’ detector predictions

Sort by confidence

...

✓ ✓ ✓

0.9 0.8 0.6 0.5 0.2 0.1

true
positive
(high overlap)

false
positive
(no overlap,
low overlap, or
duplicate)

X X X

Evaluation metric

...

0.9 0.8 0.6 0.5 0.2 0.1

✓ ✓ ✓X X X

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑡 =
#𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠@𝑡

#𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠@𝑡 + #𝑓𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠@𝑡

𝑟𝑒𝑐𝑎𝑙𝑙@𝑡 =
#𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠@𝑡

#𝑔𝑟𝑜𝑢𝑛𝑑	𝑡𝑟𝑢𝑡ℎ	𝑜𝑏𝑗𝑒𝑐𝑡𝑠

𝑡

✓
✓ + X

Evaluation metric

Average Precision (AP)
0% is worst
100% is best

mean AP over classes (mAP)

...

0.9 0.8 0.6 0.5 0.2 0.1

✓ ✓ ✓X X X

Dalal-Triggs Object Detector

• Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs,
International Conference on Computer Vision & Pattern Recognition - June 2005

• http://lear.inrialpes.fr/pubs/2005/DT05/

http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/

Example: Dalal-Triggs pedestrian detection

1. Extract fixed-sized (64x128 pixel)window at each position and scale
2. ComputeHOG(histogram of oriented gradient) featureswithin

each window
3. Score the window with a linear SVMclassifier
4. Performnon-maxima suppression to remove overlapping or

conflicting detections with lower scores
Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

Slides by Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05

Histogram of Oriented Gradients

– Votes weighted by magnitude

Orientation by bins
Histograms over
k x k pixel cells

Dalal-Triggs uses a template with a rigid form
• Human bodies are boxed shaped
• That’s why Dalal-Triggs is best known for pedestrian detection

But…is there a way to learn the spatial layout more fluidly?
• Might help us capture more appearance variation…
• What about faster, too? Since many positions might be “filtered”

Face detection and recognition

Detection

Recognition “Sally”

Challenges of Face Detection

Sliding window = tens of thousands of location/scale
evaluations, especially since faces are small

• One megapixel image has ~106 pixels
• …and a comparable number of candidate face locations

Faces are also rare: 0–10 per image
• For computational efficiency, spend as little time as possible on non-face windows.
• For 1M pix, to avoid having a false positive in every image, our false positive rate must

be less than 10-6

James Hays

The Viola/Jones Face Detector

A seminal approach to real-time object detection
Training is slow, but detection is very fast

Key ideas:
1. Integral images for fast feature evaluation
2. Boosting for feature selection
3.Attentional cascade for fast non-face window rejection

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.
P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004.

http://research.microsoft.com/en-us/um/people/viola/pubs/detect/violajones_cvpr2001.pdf
http://www.vision.caltech.edu/html-files/EE148-2005-Spring/pprs/viola04ijcv.pdf

“Haar-like features”

– Binary-valuedfilters,computingdifferences of sums of
intensity between two regions

– Computed at different positions and scales within
sliding window

– Very fast to compute (thanks to a clever
implementation trick called “integral image”)

Two-rectangle features Three-rectangle features Etc.

-1 +1

Haar wavelet

Harr features are NOT ROBUST, but CHEAP to compute
• For example, with a human face, it is a common

observation that among all faces the region of the eyes
is darker than the region of the cheeks.

• Therefore, a common Haar feature for face detection is
a set of two adjacent rectangles that lie above the
eye and the cheek region. The position of these
rectangles is defined relative to a face bounding box

Example: Two “eyebrow” filters, one
“nose” filter, and one “mouth” filter

Why “Haar-like features”?

How to Speedup “Haar-like features”? Integral Image

O(N) complexity
to build the
integral image, N
= pixel number

How to Speedup “Haar-like features”? Integral Image

O(1) complexity
to compute the
partial region
sum, regardless
of region size!

But these features are rubbish…!

Yes, individually they are ‘weak classifiers’
Jargon: ‘feature’ and ‘classifier’ are used interchangeably here.

Also with ‘learner’, ‘filter’.

But, what if we combine thousands of them…

Two-rectangle features Three-rectangle features Etc.

-1 +1

CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=801361

How many features are there?

For a 24x24 detection region, the number of
possible rectangle features is ~160,000!

How many features are there?

• For a 24x24 detection region, the number of
possible rectangle features is ~160,000!

• At test time, it is impractical to evaluate the
entire feature set.

• Can we learn a ‘strong classifier’ using just a
small subset of all possible features?

Slide credit: Paul Viola

Initially, weight each training example equally.
Weight = size of point

Boosting for feature selection

Boosting for feature selection

In each boosting round:
Round 1:

Find the weak classifier
that achieves the lowest
weighted training error.

Raise the weights of
training examples
misclassified by
current weak classifier.

Weak
Classifier 1

Slide credit: Paul Viola

Boosting illustration

In each boosting round:
Round 1:

Find the weak classifier
that achieves the lowest
weighted training error.

Raise the weights of
training examples
misclassified by
current weak classifier.

Weights
Increased

Boosting illustration

In each boosting round:
Round 2:

Find the weak classifier
that achieves the lowest
weighted training error.

Raise the weights of
training examples
misclassified by
current weak classifier.

Weak
Classifier 2

Boosting illustration

In each boosting round:
Round 2:

Find the weak classifier
that achieves the lowest
weighted training error.

Raise the weights of
training examples
misclassified by
current weak classifier.

Weights
Increased

Boosting illustration

In each boosting round:
Round 3:

Find the weak classifier
that achieves the lowest
weighted training error.

Raise the weights of
training examples
misclassified by
current weak classifier.

Weak
Classifier 3

Boosting illustration

Round 3:

Compute final classifier as
linear combination of all weak
classifier.

Weight of each classifier is
directly proportional to its
accuracy.

Exact formulas for re-weighting and combining weak learners
depend on the boosting scheme (e.g., AdaBoost).
Y. Freund and R. Schapire, A short introduction to boosting,
Journal of Japanese Society for Artificial Intelligence, 14(5):771-780, September, 1999.

http://www.cs.princeton.edu/~schapire/uncompress-papers.cgi/FreundSc99.ps

Boosting illustration: Overall Workflow

Logistic Classifier K-NN Classifier Boosting
(here we used gradient boosting)

Boosting illustration: Decision Boundary Visualization

https://en.wikipedia.org/wiki/Gradient_boosting

Harr feature selection with boosting

• Create a large pool of features (160K)
• Select discriminative features that work well together

window Learner weight

Weak learner
Final strong learner

– “Weak learner” = feature + threshold + ‘polarity’
value of rectangle feature

threshold
‘polarity’ = black or white region flip

– Train&choose weak learner that minimizes error on the
weighted training set, then reweight

Boosting for face detection

• First two features selected by boosting:

This feature combination can already yield
100% recall and 50% false positive rate!

3. Attentional cascade

- Chain classifiers that are progressively
more complex

- Minimize false positive rates at each stage,
not absolute error vs false negdetermined by

% False Pos

%
Tr
ue
po
si
tiv
e

0 50

0
10
0

Receiver operating
characteristic

Viola/Jones detector is very powerful

Question: what makes an object “segmentable”?

Objects with similar motion or change in appearance are
grouped together

Common Region/Connectivity

Connected objects are grouped together

Continuity Principle

A

B

C

X

A

B

C

X

Features on a continuous curve are grouped together

Symmetry Principle

Completion

Illusory or subjective contours are perceived

Segmentation
may never
have “ground
truth”…

Segmentation
may never
have “ground
truth”…

• http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html

• No objective definition
of segmentation!

• Compare to human
“ground truth”

Subject 1
Subject 2

Subject 3

What is a “good”
segmentation??

Evaluation: Intersection-over-Union (IoU)
with ground truth

Types of segmentations

Oversegmentation Undersegmentation

Multiple Segmentations

Major ideas for segmentation

• Bottom-up: group tokens with similar features
• Top-down: group tokens that likely belong to the same object

[Levin and Weiss 2006]

Main approaches

• Spectral techniques
• Segmentation as boundary detection
• Clustering and mean shift
• Graph-based techniques
• Deep learning techniques

K-means can be “okay” image segmentation
Rarely
directly
used…

• Versatile technique for clustering-based segmentation!

• non- parametric algorithm that clusters data iteratively by finding the densest
regions (clusters) in a feature space

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002.

Mean shift segmentation

Mean shift algorithm
• Try to find modes of this non-parametric density

Region of
interest

Center of
mass

Mean Shift
vector

Slide by Y. Ukrainitz & B. Sarel

Mean shift

Region of
interest

Center of
mass

Mean Shift
vector

Slide by Y. Ukrainitz & B. Sarel

Mean shift

Region of
interest

Center of
mass

Mean Shift
vector

Slide by Y. Ukrainitz & B. Sarel

Mean shift

Region of
interest

Center of
mass

Mean Shift
vector

Mean shift

Slide by Y. Ukrainitz & B. Sarel

Region of
interest

Center of
mass

Mean Shift
vector

Slide by Y. Ukrainitz & B. Sarel

Mean shift

Region of
interest

Center of
mass

Mean Shift
vector

Slide by Y. Ukrainitz & B. Sarel

Mean shift

Region of
interest

Center of
mass

Slide by Y. Ukrainitz & B. Sarel

Mean shift

Simple Mean Shift procedure:
• Compute mean shift vector
•Translate the Kernel window by m(x)
• g is called a “kernel function”

2

1

2

1

()

n
i

i
i

n
i

i

g
h

g
h

=

=

é ùæ ö
ê úç ÷ç ÷ê úè ø= -ê úæ öê úç ÷ê úç ÷

è øë û

å

å

x - x
x

m x x
x - x

 g() ()k¢= -x x

Computing the Mean Shift

Slide by Y. Ukrainitz & B. Sarel

Key Difference with
K-means: the “mean” is
not simple averaging, but a

“weighted average” counting
in the point distribution (a

special case of Kernel Density
Estimation)

https://en.wikipedia.org/wiki/Kernel_density_estimation

• Attraction basin: the region for
which all trajectories lead to the
same mode

• Cluster: all data points in the
attraction basin of a mode

Slide by Y. Ukrainitz & B. Sarel

Solution Stability: Attraction basin

Summary of Mean Shift

• The mean shift algorithm seeks density modes of the given set of points
• We don’t have to specify cluster number K
• … but instead, have to pick the “kernel function” and its hyperparameter

Using MeanShift for image segmentation:
• Compute features for each pixel (color, gradients, texture, etc)
• Set kernel size for features Kf and position Ks

• Initialize windows at individual pixel locations
• Perform mean shift for each window until convergence
• Merge windows that are within width of Kf and Ks

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean shift segmentation results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean shift pros and cons

• Pros
• Good general-practice segmentation
• Flexible in number and shape of regions, no need to pre-choose region number K
• Robust to outliers

• Cons
• Have to choose kernel size in advance
• Not suitable for high-dimensional features
• Much slower than k-means (due to computing kernels)

• When to use it
• Oversegmentatoin
• Multiple segmentations
• Tracking, clustering, filtering applications

Nodes: pixels

Edges: Constraints between
neighboring pixels

New Idea: Images can be viewed as graphs

Graph-view of segmentation problem
Segmentation is node-labeling

Given: pixel values and
neighborhoods, Decide:
• which nodes to label as

foreground/background
Or:
• which nodes to label as seams
… using graph algorithms

Nodes: pixels

Edges: Constraints between
neighboring pixels

Mortenson and Barrett (SIGGRAPH 1995)
(you can tell it’s old from the paper’s low quality teaser figure)

Intelligent scissors

Problem statement:
 Given two seed points, find a good

boundary connecting them

Challenges:
• Make this real-time for interaction
• Define what makes a good boundary

Nodes: pixels

Edges: Constraints between
neighboring pixels

Graph-view of this problem

Images can be viewed as graphs

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1
4

11
3

2

3

5

1. Assign weights (costs) to edges

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1
4

11
3

2

3

5

End

Start
1. Assign weights (costs) to edges

2. Select the seed nodes

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1
4

11
3

2

3

5

End

Start
1. Assign weights (costs) to edges

2. Select the seed nodes

3. Find shortest path between them

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1
4

11
3

2

3

5

End

Start
1. Assign weights (costs) to edges

2. Select the seed nodes

3. Find shortest path between them

What algorithm can we use to find
the shortest path?

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1
4

11
3

2

3

5

End

Start
1. Assign weights (costs) to edges

2. Select the seed nodes

3. Find shortest path between them

What algorithm can we use to find
the shortest path?
• Dijkstra’s algorithm (dynamic

programming)

Initialize, given seed s (pixel ID):
• cost(s) = 0 % total cost from seed to this point
• cost(!s) = big
• A = {all pixels} % set to be expanded
• prev(s)=undefined % pointer to pixel that leads to q=s

Precompute cost2(q, r) % cost between q to neighboring pixel r

Loop while A is not empty

1.q = pixel in A with lowest cost

2.Remove q from A

3.For each pixel r in neighborhood of q that is in A

a)cost_tmp = cost(q) + cost2(q,r) %this updates the costs

b)if (cost_tmp < cost(r))
i.cost(r) = cost_tmp
ii. prev(r) = q

Dijkstra’s shortest path algorithm

Graph-view of this problem

Graph-view of intelligent scissors:

1 2 1

4
1

6

9

1
3

1
4

11
3

2

3

5

End

Start
1. Assign weights (costs) to edges

2. Select the seed nodes

3. Find shortest path between them

What algorithm can we use to find
the shortest path?
• Dijkstra’s algorithm (dynamic

programming)

How should we select the edge
weights to get good boundaries?

Selecting edge weights

Define boundary cost between
neighboring pixels:

1. Lower if an image edge is present
(e.g., as found by Sobel filtering).

2. Lower if the gradient magnitude at
that point is strong.

3. Lower if gradient is similar in
boundary direction.

Gradient magnitude

Edge image

Pixel-wise cost
1
0
3

Selecting edge weights

More Advanced Graph-based Segmentations…

Normalized Cut (CVPR 1997, TPAMI 2000)

A B

• a cut penalizes large segments
• fix by normalizing for size of segments

• volume(A) = sum of costs of all edges that touch A

Source: Seitz

