Our group actively publishes in the fields of machine learning, computer vision, and interdisciplinary data science. Below are a list of recent and selected papers. A mark * denotes the author to be a VITA student or Dr. Wang's mentee. An up-to-date full paper list can be found here.
Journal Paper
- E. Oikonomou, A. Vaid, G. Holste*, A. Coppi, R. McNamara, C. Baloescu, H. Krumholz, Z. Wang, D. Apakama, G. Nadkarni, R. Khera
“Artificial intelligence-guided detection of under-recognized cardiomyopathies on point-of-care cardiac ultrasound: a multi-center study”
Lancet Digital Health, 2024. [Paper] [Code]
- W. Zheng*, S. Sharan*, Z. Fan*, K. Wang*, Y. Xi*, and Z. Wang
“Symbolic Visual Reinforcement Learning: A Scalable Framework with Object-Level Abstraction and Differentiable Expression Search”
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2024. [Paper] [Code]
- H. Yang*, Y. Liang, X. Guo, L. Wu, and Z. Wang
“Pruning Before Training May Improve Generalization, Provably”
Journal of Machine Learning Research (JMLR), 2024. [Paper] [Code]
- H. Yang*, Z. Jiang*, R. Zhang, Y. Liang, and Z. Wang
“Neural Networks with Sparse Activation Induced by Large Bias: Tighter Analysis with Bias-Generalized NTK”
Journal of Machine Learning Research (JMLR), 2024. [Paper] [Code]
- D. Xu*, Y. Yuan, M. Mardani, S. Liu, J. Song, Z. Wang, and A. Vahdat
“AGG: Amortized Generative 3D Gaussians for Single Image to 3D”
Transactions on Machine Learning Research (TMLR), 2024. [Paper] [Code]
- G. Holste*, M. Lin, R. Zhou, F. Wang, L. Liu, Q. Yan, S. Tassel, K. Kovacs, E. Chew, Z. Lu, Z. Wang, and Y. Peng
“Harnessing the power of longitudinal medical imaging for eye disease prognosis using Transformer-based sequence modeling”
npj Digital Medicine, 2024. [Paper] [Code]
- G. Holste*, Y. Zhou, S. Wang, A. Jaiswal, M. Lin, S. Zhuge, Y. Yang, D. Kim, T. Nguyen-Mau, M. Tran, J. Jeong, W. Park, J. Ryu, F. Hong, A. Verma, Y. Yamagishi, C. Kim, H. Seo, M. Kang, L. Celi, Z. Lu, R. Summers, G. Shih, Z. Wang, and Y. Peng
“Towards Long-tailed, Multi-label Disease Classification from Chest X-ray”
Medical Image Analysis, 2024. [Paper] [Code]
- G. Li, D. Hoang*, K. Bhardwaj, M. Lin, Z. Wang, and R. Marculescu
“Zero-Shot Neural Architecture Search: Challenges, Solutions, and Opportunities”
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2024. [Paper] [Code]
- E. Oikonomou, G. Holste*, N. Yuan, A. Coppi, R. McNamara, N. Haynes, A. Vora, E. Velazquez, F. Li, V. Menon, S. Kapadia, T. Gill, G. Nadkarni, H. Krumholz, Z. Wang, D. Ouyang, and R. Khera
“A Multimodality Video-Based AI Biomarker for Aortic Stenosis Development and Progression”
JAMA Cardiology, 2024. [Paper] [Code]
- W. Chen*, X. Gong*, J. Wu*, Y. Wei, H. Shi, Z. Yan, Y. Yang, and Z. Wang
“Understanding and Accelerating Neural Architecture Search with Training-Free and Theory-Grounded Metrics”
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023. [Paper] [Code]
- Z. Jiang*, G. Zheng, Y. Cheng, A. Awadallah, and Z. Wang
“CR-MoE: Consistent Routed Mixture-of-Experts for Scaling Contrastive Learning”
Transactions on Machine Learning Research (TMLR), 2023. [Paper] [Code]
- M. Lin, T. Li, Y. Yang, G. Holste*, Y. Ding, S. Tassel, K. Kovacs, G. Shih, Z. Wang, Z. Lu, F. Wang, and Y. Peng
“Improving Model Fairness in Image-based Computer-Aided Diagnosis”
Nature Communications, 2023. [Paper] [Code]
- Q. Wu*, X. Chen*, Y. Jiang*, and Z. Wang
“Chasing Better Deep Image Priors between Over- and Under-Parameterization”
Transactions on Machine Learning Research (TMLR), 2023. [Paper] [Code]
- G. Holste*, E. Oikonomou, B. Mortazavi, A. Coppi, K. Faridi, E. Miller, J. Forrest, R. McNamara, L. Ohno-Machado, N. Yuan, A. Gupta, D. Ouyang, H. Krumholz, Z. Wang, and R. Khera
“Severe Aortic Stenosis Detection by Deep Learning Applied to Echocardiography”
European Heart Journal (EHJ), 2023. [Paper] [Code]
- W. Zheng*, H. Yang, J. Cai, P. Wang*, X. Jiang, S. Du, Y. Wang, and Z. Wang
“Integrating the Traffic Science with Representation Learning for City-Wide Network Congestion Prediction”
Elsevier Information Fusion, 2023. [Paper] [Code]
- W. Zheng*, E. Huang, N. Rao, S. Katariya, Z. Wang, and K. Subbian
“You Only Transfer What You Share: Intersection-Induced Graph Transfer Learning for Link Prediction”
Transactions on Machine Learning Research (TMLR), 2023. [Paper] [Code]
- X. Yang, Z. Wang, S. Hu, C. Kim, S. Yu, M. Pajic, R. Manohar, Y. Chen, and H. Li
“Neuro-Symbolic Computing: Advancements and Challenges in Hardware-Software Co-Design”
IEEE Transactions on Circuits and Systems II (TCAS-II), 2023. [Paper] [Code]
- Z. Li*, T. Chen*, L. Li, B. Li, and Z. Wang
“Can Pruning Improve Certified Robustness of Neural Networks?”
Transactions on Machine Learning Research (TMLR), 2023. [Paper] [Code]
- H. Wang*, J. Hong, J. Zhou, and Z. Wang
“How Robust is Your Fairness? Evaluating and Sustaining Fairness under Unseen Distribution Shifts”
Transactions on Machine Learning Research (TMLR), 2023. [Paper] [Code]
- P. Narayanan, X. Hu, Z. Wu*, M. Thielke, J. Rogers, A. Harrison, J. D’Agostino, J. Brown, L. Quang, J. Uplinger, H. Kwon, and Z. Wang
“A Multi-Purpose Real Haze Benchmark with Quantifiable Haze Levels and Ground Truth”
IEEE Transactions on Image Processing (TIP), 2023. [Paper] [Code]
- T. Chen*, Z. Zhang*, J. Wu, R. Huang, S. Liu, S. Chang, and Z. Wang
“Can You Win Everything with A Lottery Ticket?”
Transactions on Machine Learning Research (TMLR), 2022. [Paper] [Code]
- Y. Han*, G. Holste*, Y. Ding, A. Tewfik, Y. Peng, and Z. Wang
“Radiomics-Guided Global-Local Transformer for Weakly Supervised Pathology Localization in Chest X-Rays”
IEEE Transactions on Medical Imaging (TMI), 2022. [Paper] [Code]
- T. Chen*, Y. Cheng, Z. Gan, J. Wang, L. Wang, J. Liu, and Z. Wang
“Adversarial Feature Augmentation and Normalization for Visual Recognition”
Transactions on Machine Learning Research (TMLR), 2022. [Paper] [Code]
- S. Mohseni, H. Wang*, Z. Yu, C. Xiao, Z. Wang, J. Yadawa
“Taxonomy of Machine Learning Safety: A Survey and Primer”
ACM Computing Surveys (CSUR), 2022. [Paper]
- T. Chen*, S. Liu, S. Chang, L. Amini, and Z. Wang
“Queried Unlabeled Data Improves and Robustifies Class-Incremental Learning”
Transactions on Machine Learning Research (TMLR), 2022. (Featured Certification) [Paper] [Code]
- (α-β) T. Chen*, X. Chen*, W. Chen*, H. Heaton, J. Liu, Z. Wang, and W. Yin
“Learning to Optimize: A Primer and A Benchmark”
Journal of Machine Learning Research (JMLR), 2022. [Paper] [Code]
- T. Chen*, K. Zhou, K. Duan, W. Zheng*, P. Wang*, X. Hu, and Z. Wang
“Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study”
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022. [Paper] [Code]
- X. Chen*, Y. Zhao, Y. Wang, P. Xu, H. You, C. Li, Y. Fu, Y. Lin, and Z. Wang
“SmartDeal: Re-Modeling Deep Network Weights for Efficient Inference and Training”
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2021. [Paper] [Code]
- T. Hu*, F. Gama, T. Chen*, W. Zheng*, Z. Wang, A. Ribeiro, and B. Sadler
“Scalable Perception-Action-Communication Loops with Convolutional and Graph Neural Networks”
IEEE Transactions on Signal and Information Processing over Networks (TSIPN), 2021. [Paper] [Code]
- S. Yang*, Z. Wang, J. Jiu, and Z. Guo
“Controllable Sketch-to-Image Translation for Robust Face Synthesis”
IEEE Transactions on Image Processing (TIP), 2021. [Paper] [Code]
- J. Yan, Y. Zhong, Y. Fang, Z. Wang, and K. Ma
“Exposing Semantic Segmentation Failures via Maximum Discrepancy Competition”
International Journal of Computer Vision (IJCV), 2021. [Paper] [Code]
- S. Yang*, Z. Wang, and J. Liu
“Shape-Matching GAN++: Scale Controllable Dynamic Artistic Text Style Transfer”
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021. [Paper]
- Z. Wu*, H. Wang*, Z. Wang, H. Jin, and Z. Wang
“Privacy-Preserving Deep Action Recognition: An Adversarial Learning Framework and A New Dataset”
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020. [Paper] [Code]
- Y. Jiang*, X. Gong*, D. Liu, Y. Cheng, C. Fang, X. Shen, J. Yang, P. Zhou, and Z. Wang
“EnlightenGAN: Deep Light Enhancement without Paired Supervision”
IEEE Transactions on Image Processing (TIP), 2020. [Paper] [Code]
- M. Karimi, D. Wu, Z. Wang, and Y. Shen
“Explainable Deep Relational Networks for Predicting Compound-Protein Affinities and Contacts”
Journal of Chemical Information and Modeling (JCIM), 2020. [Paper] [Code]
- S. Li, W. Ren, F. Wang, I. Araujo*, E. K. Tokuda*, R. Hirata, R. Cesar, Z. Wang, and X. Cao
“A Comprehensive Benchmark Analysis of Single Image Deraining: Current Challenges and Future Perspectives”
International Journal of Computer Vision (IJCV), 2020. [Paper]
- Y. Yuan*, W. Yang, W. Ren, J Liu, W. J. Scheirer, and Z. Wang, et. al.
“Advancing Image Understanding in Poor Visibility Environments: A Collective Benchmark Study”
IEEE Transactions on Image Processing (TIP), 2020. [Paper]
- M. Karimi, D. Wu, Z. Wang and Y. Shen
“DeepAffinity: Interpretable Deep Learning of Compound-Protein Affinity through Unified Recurrent and Convolutional Neural Networks”
Oxford Bioinformatics, 2019. [Paper] [Code]
- R. G. VidalMata, ... Y. Yuan*, J. Wu*, Z. Wang, ... et. al.
“Bridging the Gap Between Computational Photography and Visual Recognition”
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020. [Paper][Code]
- B. Li*, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, and Z. Wang
“Benchmarking Single Image Dehazing and Beyond”
IEEE Transactions on Image Processing (TIP), vol. 28, no. 1, pp. 492-505, 2019. [Paper] [Project Page]
Conference Paper
- Z. Fan*, K. Wang*, K. Wen, Z. Zhu*, D. Xu*, and Z. Wang
"LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS"
Advances in Neural Information Processing Systems (NeurIPS), 2024. (Spotlight) [Paper] [Code]
- H. Hu*, Z. Fan*, T. Wu, Y. Xi*, S. Lee*, G. Pavlakos, and Z. Wang
"Expressive Gaussian Human Avatars from Monocular RGB Video"
Advances in Neural Information Processing Systems (NeurIPS), 2024. [Paper] [Code]
- R. Cai*, Y. Ro, G. Kim, P. Wang*, B. Bejnordi, A. Akella, and Z. Wang
"Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design"
Advances in Neural Information Processing Systems (NeurIPS), 2024. [Paper] [Code]
- Z. Zhang*, R. Chen*, S. Liu*, Z. Yao, O. Ruwase, B. Chen, X. Wu, and Z. Wang
"Found in the Middle: How Language Models Use Long Contexts Better via Plug-and-Play Positional Encoding"
Advances in Neural Information Processing Systems (NeurIPS), 2024. [Paper] [Code]
- Z. Fan*, J. Zhang, W. Cong*, P. Wang*, R. Li, K. Wen, S. Zhou, A Kadambi, Z. Wang, D. Xu, B. Ivanovic, M. Pavone, and Y. Wang
“Large Spatial Model: End-to-end Unposed Images to Semantic 3D”
Advances in Neural Information Processing Systems (NeurIPS), 2024. [Paper] [Code]
- H. Yang*, B. Kailkhura, Z. Wang, and Y. Liang
“Training Dynamics of Transformers to Recognize Word Co-occurrence via Gradient Flow Analysis"
Advances in Neural Information Processing Systems (NeurIPS), 2024. [Paper] [Code]
- H. Liang, Y. Yin, D. Xu*, H. Liang*, Z. Wang, K. Plataniotis, Y. Zhao, and Y. Wei
“Diffusion4D: Fast Spatial-temporal Consistent 4D generation via Video Diffusion Models"
Advances in Neural Information Processing Systems (NeurIPS), 2024. [Paper] [Code]
- H. Lu, Y. Zhou, S. Liu*, Z. Wang, M. Mahoney, and Y. Yang
“AlphaPruning: Using Heavy-Tailed Self Regularization Theory for Improved Layer-wise Pruning of Large Language Models"
Advances in Neural Information Processing Systems (NeurIPS), 2024. [Paper] [Code]
- X. Zhao, G. Sun, R. Cai*, Y. Zhou, P. Li, P. Wang*, B. Tan, Y. He, L. Chen, Y. Liang, B. Chen, B. Yuan, H. Wang, A. Li, Z. Wang, and T. Chen*
“Model-GLUE: Democratized LLM Scaling for A Large Model Zoo in the Wild”
Advances in Neural Information Processing Systems, Track on Datasets and Benchmarks (NeurIPS D & B), 2024. [Paper] [Code]
- Z. Zhu*, Z. Fan*, Y. Jiang*, and Z. Wang
“FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting”
European Conference on Computer Vision (ECCV), 2024. [Paper] [Code]
- S. Zhou, Z. Fan*, D. Xu*, H. Chang, P. Chari, T. Bharadwaj, S. You, Z. Wang, and A. Kadambi
“DreamScene360: Unconstrained Text-to-3D Scene Generation with Panoramic Gaussian Splatting”
European Conference on Computer Vision (ECCV), 2024. [Paper] [Code]
- R. Li, Z. Fan*, B. Wang, P. Wang*, Z. Wang, and X. Wu
“VersatileGaussian: Real-time Neural Rendering for Versatile Tasks using Gaussian Splatting”
European Conference on Computer Vision (ECCV), 2024. [Paper] [Code]
- Q. Li, J. Hong*, C. Xie, J. Tan, R. Xin, J. Hou, X. Yin, Z. Wang, D. Hendrycks, Z. Wang, B. Li, B. He, and D. Song
“LLM-PBE: Assessing Data Privacy in Large Language Models”
International Conference on Very Large Data Bases (VLDB), 2024. (Best Paper Finalist) [Paper] [Code]
- L. Sun*, N. Bhatt*, J. Liu*, Z. Fan*, Z. Wang, T. Humphreys, and U. Topcu
“MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2024. [Paper] [Code]
- R. Cai*, S. Muralidharan, G. Heinrich, H. Yin, Z. Wang, J. Kautz, and P. Molchanov
“Flextron: Many-in-One Flexible Large Language Model”
International Conference on Machine Learning (ICML), 2024. (Oral) [Paper] [Code]
- R. Cai*, Y. Tian, Z. Wang, and B. Chen
“LoCoCo: Dropping In Convolutions for Long Context Compression”
International Conference on Machine Learning (ICML), 2024. [Paper] [Code]
- L. Yin*, A. Jaiswal*, S. Liu*, S. Kundu, and Z. Wang
“Junk DNA Hypothesis: Pruning Small Pre-Trained Weights Irreversibly and Monotonically Impairs Difficult Downstream Tasks in LLMs”
International Conference on Machine Learning (ICML), 2024. [Paper] [Code]
- L. Yin*, Y. Wu, Z. Zhang*, C. Hsieh, Y. Wang, Y. Jia, G. Li, A. Jaiswal*, M. Pechenizkiy, Y. Liang, M. Bendersky, Z. Wang, and S. Liu*
“Outlier Weighed Layerwise Sparsity (OWL): A Missing Secret Sauce for Pruning LLMs to High Sparsity”
International Conference on Machine Learning (ICML), 2024. [Paper] [Code]
- R. Chen*, T. Zhao, A. Jaiswal*, N. Shah, and Z. Wang
“LLaGA: Large Language and Graph Assistant”
International Conference on Machine Learning (ICML), 2024. [Paper] [Code]
- J. Hong*, J. Duan, C. Zhang, Z. Li*, C. Xie, K. Lieberman, J. Diffenderfer, B. Bartoldson, A. Jaiswal*, K. Xu, B. Kailkhura, D. Hendrycks, D. Song, Z. Wang, and B. Li
“Decoding Compressed Trust: Scrutinizing the Trustworthiness of Efficient LLMs Under Compression”
International Conference on Machine Learning (ICML), 2024. [Paper] [Code]
- Z. Li*, S. Liu*, T. Chen*, A. Jaiswal*, Z. Zhang*, D. Wang, R. Krishnamoorthi, S. Chang, Z. Wang
“Sparse Cocktail: Every Sparse Pattern Every Sparse Ratio All At Once”
International Conference on Machine Learning (ICML), 2024. [Paper] [Code]
- J. Zhao, Z. Zhang*, B. Chen, Z. Wang, A. Anandkumar, and Y. Tian
“GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection”
International Conference on Machine Learning (ICML), 2024. (Oral) [Paper] [Code]
- H. Dong, X. Yang, Z. Zhang*, Z. Wang, Y. Chi, and B. Chen
“Get More with LESS: Synthesizing Recurrence with KV Cache Compression for Efficient LLM Inference”
International Conference on Machine Learning (ICML), 2024. [Paper] [Code]
- Y. Zhang, P. Li, J. Hong*, J. Li, Y. Zhang, W. Zheng*, P. Chen, J. Lee, W. Yin, M. Hong, Z. Wang, S. Liu, and T. Chen*
“Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark”
International Conference on Machine Learning (ICML), 2024. [Paper] [Code]
- P. Wang*, D. Xu*, Z. Fan*, D. Wang, S. Mohan, F. Iandola, R. Ranjan, Y. Li, Q. liu, Z. Wang, and V. Chandra
"Taming Mode Collapse in Score Distillation for Text-to-3D Generation”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2024. [Paper] [Code]
- M. Varma, P. Wang*, Z. Fan*, Z. Wang, H. Su, and R. Ramamoorthi
"Lift3D: Zero-Shot Lifting of Any 2D Vision Model to 3D”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2024. [Paper] [Code]
- S. Zhou, H. Chang, S. Jiang, Z. Fan*, Z. Zhu*, D. Xu*, P. Chari, S. You, Z. Wang, and A. Kadambi
"Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2024. (Highlight) [Paper] [Code]
- V. Goel, E. Peruzzo, Y. Jiang*, D. Xu*, X. Xu, N. Sebe, T. Darrell, Z. Wang, H. Shi
"PAIR Diffusion: A Comprehensive Multimodal Object-Level Image Editor”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2024. [Paper] [Code]
- M. Ohanyan, H. Manukyan, Z. Wang, S. Navasardyan, and H. Shi
"Zero-Painter: Training-Free Layout Control for Text-to-Image Synthesis”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2024. [Paper] [Code]
- X. Xu, J. Guo, Z. Wang, G. Huang, I. Essa, and H. Shi
"Prompt-Free Diffusion: Taking 'Text' out of Text-to-Image Diffusion Models”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2024. [Paper] [Code]
- M. D'Incà, E. Peruzzo, M. Mancini, D. Xu*, V. Goel, X. Xu, Z. Wang, H. Shi, and N. Sebe
"OpenBias: Open-set Bias Detection in Generative Models”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2024. (Highlight) [Paper] [Code]
- Z. Zhang*, S. Liu*, R. Chen*, B. Kailkhura, B. Chen, and Z. Wang
"Q-Hitter: A Better Token Oracle for Efficient LLM Inference via Sparse-Quantized KV Cache”
Conference on Machine Learning and Systems (MLSys), 2024. [Paper] [Code]
- Y. Yang, N. Bhatt*, T. Ingebrand, W. Ward, S. Carr, Z. Wang, and U. Topcu
"Fine-Tuning Language Models Using Formal Methods Feedback”
Conference on Machine Learning and Systems (MLSys), 2024. [Paper] [Code]
- A. Jaiswal*, Z. Gan, X. Du, B. Zhang, Z. Wang, and Y. Yang
"Compressing LLMs: The Truth is Rarely Pure and Never Simple”
International Conference on Learning Representations (ICLR), 2024. [Paper] [Code]
- J. Hong*, J. Wang, C. Zhang, Z. LI*, B. Li, and Z. Wang
"DP-OPT: Make Large Language Model Your Differentially-Private Prompt Engineer”
International Conference on Learning Representations (ICLR), 2024. (Spotlight) [Paper] [Code]
- Y. Jiang*, H. Tang, J. Chang, L. Song, Z. Wang, and L. Cao
"Efficient-3DiM: Learning a Generalizable Single-image Novel-view Synthesizer in One Day”
International Conference on Learning Representations (ICLR), 2024. [Paper] [Code]
- W. Chen*, J. Wu*, Z. Wang, and B. Hanin
"Principled Architecture-aware Scaling of Hyperparameters”
International Conference on Learning Representations (ICLR), 2024. [Paper] [Code]
- P. Wang*, S. Yang, S. Li, Z. Wang, and P. Li
"Polynomial Width is Sufficient for Set Representation with High-dimensional Features”
International Conference on Learning Representations (ICLR), 2024. [Paper] [Code]
- X. Chen*, Y. Yang, Z. Wang, and B. Mirzasoleiman
"Data Distillation Can Be Like Vodka: Distilling More Times For Better Quality”
International Conference on Learning Representations (ICLR), 2024. [Paper] [Code]
- Y. You*, R. Zhou, J. Park, H. Xu, C. Tian, Z. Wang, and Y. Shen
"Latent 3D Graph Diffusion”
International Conference on Learning Representations (ICLR), 2024. [Paper] [Code]
- A. Isajanyan, A. Shatveryan, D. Kocharian, Z. Wang, and H. Shi
"Social Reward: Evaluating and Enhancing Generative AI through Million-User Feedback from an Online Creative Community”
International Conference on Learning Representations (ICLR), 2024. (Spotlight) [Paper] [Code]
- S. Yu, J. Hong*, H. Zhang, H. Wang*, Z. Wang, and J. Zhou
"Safe and Robust Watermark Injection with a Single OoD Image”
International Conference on Learning Representations (ICLR), 2024. [Paper] [Code]
- D. Sow, S. Lin, Z. Wang, and Y. Liang
"Doubly Robust Instance-Reweighted Adversarial Training”
International Conference on Learning Representations (ICLR), 2024. [Paper] [Code]
- A. Jaiswal*, S. Liu*, T. Chen*, and Z. Wang
"The Emergence of Essential Sparsity in Large Pre-trained Models: The Weights that Matter”
Advances in Neural Information Processing Systems (NeurIPS), 2023. [Paper] [Code]
- Z. Zhang*, Y. Sheng, T. Zhou, T. Chen*, L. Zheng, R. Cai*, Z. Song, Y. Tian, C. Ré, C. Barrett, Z. Wang, and B. Chen
"H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models”
Advances in Neural Information Processing Systems (NeurIPS), 2023. [Paper] [Code]
- D. Hoang*, S. Kundu, S. Liu*, and Z. Wang
"Don’t Just Prune by Magnitude! Your Mask Topology is A Secret Weapon”
Advances in Neural Information Processing Systems (NeurIPS), 2023. [Paper] [Code]
- H. Wang*, Z. Jiang*, Y. You*, Y. Han*, G. Liu, J. Srinivasa, R. Kompella, Z. Wang
"Graph Mixture of Experts: Learning on Large-Scale Graphs with Explicit Diversity Modeling”
Advances in Neural Information Processing Systems (NeurIPS), 2023. [Paper] [Code]
- Z. Wang, Y. Jiang*, Y. Lu, Y. Shen, P. He, W. Chen, Z. Wang, M. Zhou
"In-Context Learning Unlocked for Diffusion Models”
Advances in Neural Information Processing Systems (NeurIPS), 2023. (Spotlight) [Paper] [Code]
- Z. Wang, Y. Jiang*, H. Zheng, P. Wang*, P. He, Z. Wang, W. Chen, M. Zhou
"Patch Diffusion: Faster and More Data-Efficient Training of Diffusion Models”
Advances in Neural Information Processing Systems (NeurIPS), 2023. [Paper] [Code]
- L. Yin*, G. Li, M. Fang, L. Shen, T. Huang, Z. Wang, V. Menkovski, X. Ma, M. Pechenizkiy, and S. Liu*
"Dynamic Sparsity Is Channel-Level Sparsity Learner”
Advances in Neural Information Processing Systems (NeurIPS), 2023. [Paper] [Code]
- W. Cong*, H. Liang*, P. Wang*, Z. Fan*, T. Chen*, M. Varma*, Y. Wang*, and Z. Wang
"Enhancing NeRF akin to Enhancing LLMs: Generalizable NeRF Transformer with Mixture-of-View-Experts”
IEEE International Conference on Computer Vision (ICCV), 2023. [Paper] [Code]
- A. Jaiswal*, X. Zhang, S. Chan, and Z. Wang
"Physics-Driven Turbulence Image Restoration with Stochastic Refinement”
IEEE International Conference on Computer Vision (ICCV), 2023. [Paper] [Code]
- Y. Han*, P. Wang*, S. Kundu, Y. Ding, and Z. Wang
"Vision HGNN: An Image is More than a Graph of Nodes”
IEEE International Conference on Computer Vision (ICCV), 2023. (Oral) [Paper] [Code]
- T. Chen*, X. Chen*, X. Du, A. Rashwan, F. Yang, H. Chen, Z. Wang, and Y. Li
"AdaMV-MoE: Adaptive Multi-Task Vision Mixture-of-Experts”
IEEE International Conference on Computer Vision (ICCV), 2023. [Paper] [Code]
- C. Li, B. Feng, Z. Fan*, P. Pan, and Z. Wang
"StegaNeRF: Embedding Invisible Information within Neural Radiance Fields”
IEEE International Conference on Computer Vision (ICCV), 2023. [Paper] [Code]
- X. Xu, Z. Wang, G. Zhang, K. Wang, and H. Shi
"Versatile Diffusion: Text, Images and Variations All in One Diffusion Model”
IEEE International Conference on Computer Vision (ICCV), 2023. [Paper] [Code]
- Y. Zhang, R. Cai*, T. Chen*, G. Zhang, H. Zhang, P. Chen, S. Chang, Z. Wang, and S. Liu
"Robust Mixture-of-Expert Training for Convolutional Neural Networks”
IEEE International Conference on Computer Vision (ICCV), 2023. (Oral) [Paper] [Code]
- L. Khachatryan, A. Movsisyan, V. Tadevosyan, R. Henschel, Z. Wang, S. Navasardyan, and H. Shi
"Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators”
IEEE International Conference on Computer Vision (ICCV), 2023. (Oral) [Paper] [Code]
- G. Holste*, Z. Jiang*, A. Jaiswal*, M. Hanna, S. Minkowitz, A. Legasto, J. Escalon, S. Steinberger, M. Bittman, T. Shen, Y. Ding, R. Summers, G. Shih, Y. Peng, and Z. Wang
“How Does Pruning Impact Long-Tailed Multi-Label Medical Image Classifiers?”
Medical Image Computing and Computer Assisted Interventions (MICCAI), 2023. [Paper] [Code]
- W. Chen*, W. Huang, and Z. Wang
“No Free Lunch in Neural Architectures? A Joint Analysis of Expressivity, Convergence, and Generalization”
International Conference on Automated Machine Learning (AutoML-Conf), 2023. [Paper] [Code]
- X. Chen*, T. Chen*, W. Chen, A. Awadallah, Z. Wang, and Y. Cheng
“DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models”
Annual Meeting of the Association for Computational Linguistics (ACL), 2023. (Long) [Paper][Code]
- A. Jaiswal*, S. Liu*, T. Chen*, Y. Ding, and Z. Wang
“Instant Soup: Cheap Pruning Ensembles in A Single Pass Can Draw Lottery Tickets from Large Models”
International Conference on Machine Learning (ICML), 2023. (Oral) [Paper] [Code]
- A. Jaiswal*, S. Liu*, T. Chen*, Y. Ding, and Z. Wang
“Graph Ladling: Shockingly Simple Parallel GNN Training without Intermediate Communication”
International Conference on Machine Learning (ICML), 2023. [Paper] [Code]
- R. Cai*, Z. Zhang*, and Z. Wang
“Robust Weight Signatures: Gaining Robustness as Easy as Patching Weights?”
International Conference on Machine Learning (ICML), 2023. [Paper] [Code]
- P. Wang*, R. Panda, and Z. Wang
“Data Efficient Neural Scaling Law via Model Reusing”
International Conference on Machine Learning (ICML), 2023. [Paper] [Code]
- W. Zheng*, S. Sharan*, A. Jaiswal*, K. Wang*, Y. Xi*, D. Xu*, and Z. Wang
“Outline, Then Details: Syntactically Guided Coarse-To-Fine Code Generation”
International Conference on Machine Learning (ICML), 2023. [Paper] [Code]
- X. Chen*, N. Vadori, T. Chen*, and Z. Wang
“Learning to Optimize Differential Games”
International Conference on Machine Learning (ICML), 2023. [Paper] [Code]
- T. Huang, L. Yin*, Z. Zhang*, L. Shen, M. Fang, M. Pechenizkiy, Z. Wang, and S. Liu*
“Are Large Kernels Better Teachers than Transformers for ConvNets?”
International Conference on Machine Learning (ICML), 2023. [Paper] [Code]
- Y. Ro, Z. Wang, V. Chidambaram, and A. Akella
“Lowering the Pre-training Tax for Gradient-based Subset Training: A Lightweight Distributed Pre-Training Toolkit”
International Conference on Machine Learning (ICML), 2023. [Paper] [Code]
- J. Liu, X. Chen*, Z. Wang, W. Yin, and H. Cai
“Towards Constituting Mathematical Structures for Learning to Optimize”
International Conference on Machine Learning (ICML), 2023. [Paper] [Code]
- D. Xu*, Y. Jiang*, P. Wang*, Z. Fan*, Y. Wang*, and Z. Wang
"NeuralLift-360: Lifting An In-the-wild 2D Photo to A 3D Object with 360◦ Views”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023. (Highlight) [Paper] [Code]
- Y. Jiang*, P. Hedman, B. Mildenhall, D. Xu*, J. Barron, Z. Wang, and T. Xue
"AligNeRF: High-Fidelity Neural Radiance Fields via Alignment-Aware Training”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023. [Paper] [Code]
- X. Gong*, S. Mohan, N. Dhingra, J. Bazin, Y. Li, Z. Wang, and R. Ranjan
"MMG-Ego4D: Multimodal Generalization in Egocentric Action Recognition”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023. [Paper] [Code]
- H. Lu*, H. Tunanyan, K. Wang, S. Navasardyan, Z. Wang, and H. Shi
"Specialist Diffusion: Plug-and-Play Sample-Efficient Fine-Tuning of Text-to-Image Diffusion Models to Learn Any Unseen Style”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2023. [Paper] [Code]
- D. Hoang*, S. Liu*, R. Marculescu, and Z. Wang
"Revisiting Pruning at Initialization Through the Lens of Ramanujan Graph”
International Conference on Learning Representations (ICLR), 2023. (Oral) [Paper] [Code]
- S. Liu*, T. Chen*, Z. Zhang*, X. Chen*, T. Huang, A. Jaiswal*, and Z. Wang
"Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together!”
International Conference on Learning Representations (ICLR), 2023. (Spotlight) [Paper] [Code]
- T. Chen*, Z. Zhang*, A. Jaiswal*, S. Liu*, and Z. Wang
"Sparse MoE as the New Dropout: Scaling Dense and Self-Slimmable Transformers”
International Conference on Learning Representations (ICLR), 2023. (Spotlight) [Paper] [Code]
- P. Wang*, R. Panda, L. Hennigen, P. Greengard, L. Karlinsky, R. Feris, D. Cox, Z. Wang, and Y. Kim
"Learning to Grow Pretrained Models for Efficient Transformer Training”
International Conference on Learning Representations (ICLR), 2023. (Spotlight) [Paper] [Code]
- S. Yu, J. Hong, H. Wang*, Z. Wang, and J. Zhou
"Turning the Curse of Heterogeneity in Federated Learning into a Blessing for Out-of-Distribution Detection”
International Conference on Learning Representations (ICLR), 2023. (Spotlight) [Paper] [Code]
- S. Liu*, T. Chen*, X. Chen*, X. Chen*, Q. Xiao, B. Wu, T. Karkkainen, M. Pechenizkiy, D. Mocanu, and Z. Wang
"More ConvNets in the 2020s: Scaling up Kernels Beyond 51x51 using Sparsity”
International Conference on Learning Representations (ICLR), 2023. [Paper] [Code]
- M. Varma*, P. Wang*, X. Chen*, T. Chen*, S. Venugopalan, and Z. Wang
"Is Attention All That NeRF Needs?”
International Conference on Learning Representations (ICLR), 2023. [Paper] [Code]
- Z. Fan*, P. Wang*, Y. Jiang*, X. Gong*, D. Xu*, and Z. Wang
"NeRF-SOS: Any-View Self-supervised Object Segmentation on Complex Scenes”
International Conference on Learning Representations (ICLR), 2023. [Paper] [Code]
- Z. Jiang*, Y. Chen, M. Liu, D. Chen, X. Dai, L. Yuan, Z. Liu, and Z. Wang
"Layer Grafted Pre-training: Bridging Contrastive Learning and Masked Image Modeling For Label-Efficient Representations”
International Conference on Learning Representations (ICLR), 2023. [Paper] [Code]
- T. Chen*, C. Gong, D. Diaz, X. Chen*, J. Wells, Q. Liu, Z. Wang, A. Ellington, A. Dimakis, and A. Klivans
"HotProtein: A Novel Framework for Protein Thermostability Prediction and Editing”
International Conference on Learning Representations (ICLR), 2023. [Paper] [Code]
- P. Wang*, S. Yang, Y. Liu, Z. Wang, and P. Li
"Equivariant Hypergraph Diffusion Neural Operators”
International Conference on Learning Representations (ICLR), 2023. [Paper] [Code]
- Y. You*, T. Chen*, Z. Wang, and Y. Shen
"Graph Domain Adaptation via Theory-Grounded Spectral Regularization”
International Conference on Learning Representations (ICLR), 2023. [Paper] [Code]
- J. Yang, X. Chen*, T. Chen*, Z. Wang, and Y. Liang
"M-L2O: Towards Generalizable Learning-to-Optimize by Test-Time Fast Self-Adaptation”
International Conference on Learning Representations (ICLR), 2023. [Paper] [Code]
- H. Fan, Z. Wang, Y. Yang, and M. Kankanhalli
"Continuous-Discrete Convolution for (3+1)D Geometry-Sequence Modeling in Proteins”
International Conference on Learning Representations (ICLR), 2023. [Paper] [Code]
- H. Yang*, and Z. Wang
"On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks”
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023. [Paper] [Code]
- J. Yang, T. Chen*, M. Zhu*, F. He, D. Tao, Y. Liang, and Z. Wang
"Learning to Generalize Provably in Learning to Optimize”
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023. [Paper] [Code]
- H. Heaton, X. Chen*, Z. Wang, and W. Yin
"Safeguarded Learned Convex Optimization”
AAAI Conference on Artificial Intelligence (AAAI), 2023. [Paper] [Code]
- J. Hong, H. Wang*, Z. Wang, and J. Zhou
"Federated Robustness Propagation: Sharing Adversarial Robustness in Heterogeneous Federated Learning”
AAAI Conference on Artificial Intelligence (AAAI), 2023. [Paper] [Code]
- Z. Kong, H. Ma, G. Yuan, M. Sun, Y. Xie, P. Dong, X. Meng, X. Shen, H. Tang, M. Qin, T. Chen*, X. Ma, X. Xie, Z. Wang, and Y. Wang
"Peeling the Onion: Hierarchical Reduction of Data Redundancy for Efficient Vision Transformer Training”
AAAI Conference on Artificial Intelligence (AAAI), 2023. [Paper] [Code]
- T. Huang, T. Chen*, M. Fang, V. Menkovski, J. Zhao, L. Yin, Y. Pei, D. Mocanu, Z. Wang, M. Pechenizkiy, and S. Liu*
"You Can Have Better Graph Neural Networks by Not Training Weights at All: Finding Untrained Graph Tickets”
Learning on Graphs Conference (LoG), 2022. (Oral & Best Paper Award) [Paper] [Code]
- Y. Han*, E. Huang, W. Zheng*, N. Rao, Z. Wang, and K. Subbian
“Search Behavior Prediction: A Hypergraph Perspective”
ACM International Conference on Web Search and Data Mining (WSDM), 2023. [Paper] [Code]
- W. Chen*, W. Huang, X. Gong*, B. Hanin, and Z. Wang
“Deep Architecture Connectivity Matters for Its Convergence: A Fine-Grained Analysis”
Advances in Neural Information Processing Systems (NeurIPS), 2022. [Paper] [Code]
- D. Xu*, P. Wang*, Y. Jiang*, Z. Fan*, and Z. Wang
“Signal Processing for Implicit Neural Representations”
Advances in Neural Information Processing Systems (NeurIPS), 2022. [Paper] [Code]
- H. Liang*, Z. Fan*, R. Sarkar, Z. Jiang*, T. Chen*, K. Zou, Y. Cheng, C. Hao, and Z. Wang
“M3ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task Learning with Model-Accelerator Co-design”
Advances in Neural Information Processing Systems (NeurIPS), 2022. [Paper] [Code]
- Z. Jiang*, X. Chen*, X. Huang, X. Du, D. Zhou, and Z. Wang
“Back Razor: Memory-Efficient Transfer Learning by Self-Sparsified Backpropogation”
Advances in Neural Information Processing Systems (NeurIPS), 2022. [Paper] [Code]
- R. Cai*, Z. Zhang*, T. Chen*, X. Chen*, and Z. Wang
“Randomized Channel Shuffling: Minimal-Overhead Backdoor Attack Detection without Clean Datasets”
Advances in Neural Information Processing Systems (NeurIPS), 2022. [Paper] [Code]
- S. Sharan*, W. Zheng*, K. Hsu, J. Xiong, A. Chen, and Z. Wang
“Symbolic Distillation for Learned TCP Congestion Control”
Advances in Neural Information Processing Systems (NeurIPS), 2022. [Paper] [Code]
- A. Jaiswal*, P. Wang*, T. Chen*, J. Rousseau, Y. Ding, and Z. Wang
“Old can be Gold: Better Gradient Flow can make Vanilla-GCNs Great Again”
Advances in Neural Information Processing Systems (NeurIPS), 2022. [Paper] [Code]
- H. Wang*, J. Hong, A. Zhang, J. Zhou, and Z. Wang
“Trap and Replace: Defending Backdoor Attacks by Trapping Them into an Easy-to-Replace Subnetwork”
Advances in Neural Information Processing Systems (NeurIPS), 2022. [Paper] [Code]
- J. Wu*, Y. Liang, F. Han, H. Akbari, Z. Wang, and C. Yu
“Scaling Multimodal Pre-Training via Cross-Modality Gradient Harmonization”
Advances in Neural Information Processing Systems (NeurIPS), 2022. [Paper] [Code]
- M. Varma*, X. Chen*, Z. Zhang*, T. Chen*, S. Venugopalan, and Z. Wang
“Sparse Winning Tickets are Data-Efficient Image Recognizers”
Advances in Neural Information Processing Systems (NeurIPS), 2022. [Paper] [Code]
- T. Wei, Y. You*, T. Chen*, Y. Shen, J. He, and Z. Wang
“Augmentations in Hypergraph Contrastive Learning: Fabricated and Generative”
Advances in Neural Information Processing Systems (NeurIPS), 2022. [Paper] [Code]
- K. Duan, Z. Liu, P. Wang*, W. Zheng*, K. Zhou, T. Chen*, X. Hu, and Z. Wang
“A Comprehensive Study on Large-Scale Graph Training: Benchmarking and Rethinking”
Advances in Neural Information Processing Systems, Track on Datasets and Benchmarks (NeurIPS D & B), 2022. [Paper] [Code]
- D. Xu*, Y. Jiang*, P. Wang*, Z. Fan*, H. Shi, and Z. Wang
“SinNeRF: Training Neural Radiance Field on Complex Scenes from a Single Image”
European Conference on Computer Vision (ECCV), 2022. [Paper] [Code]
- Z. Fan*, Y. Jiang*, P. Wang*, X. Gong*, D. Xu*, and Z. Wang
“Unified Implicit Neural Stylization”
European Conference on Computer Vision (ECCV), 2022. [Paper] [Code]
- X. Chen*, T. Chen*, Y. Cheng, W. Chen, A. Awadallah, and Z. Wang
“Scalable Learning to Optimize: A Learned Optimizer Can Train Big Models”
European Conference on Computer Vision (ECCV), 2022. [Paper] [Code]
- H. Liang*, H. Fan*, Z. Fan*, Y. Wang*, T. Chen*, Y. Cheng, and Z. Wang
“Point Cloud Domain Adaptation via Masked Local 3D Structure Prediction”
European Conference on Computer Vision (ECCV), 2022. [Paper] [Code]
- Z. Jiang*, T. Chen*, X. Chen*, Y. Cheng, L. Zhou, L. Yuan, A. Awadallah, and Z. Wang
“DnA: Improving Few-shot Transfer Learning with Low-Rank Decomposition and Alignment”
European Conference on Computer Vision (ECCV), 2022. [Paper] [Code]
- Y. Jiang*, B. Wronski, B. Mildenhall, J. Barron, Z. Wang, and T. Xue
“Fast and High Quality Image Denoising via Malleable Convolution”
European Conference on Computer Vision (ECCV), 2022. [Paper] [Code]
- W. Chen*, X. Du, F. Yang, L. Beyer, X. Zhai, T. Lin, H. Chen, J. Li, X. Song, Z. Wang, and D. Zhou
“A Simple Single-Scale Vision Transformer for Object Detection and Instance Segmentation”
European Conference on Computer Vision (ECCV), 2022. [Paper] [Code]
- Z. Mao, A. Jaiswal*, Z. Wang, and S. Chan
“Single Frame Atmospheric Turbulence Mitigation: A Benchmark Study and A New Physics-Inspired Transformer Model”
European Conference on Computer Vision (ECCV), 2022. [Paper] [Code]
- H. Wang*, A. Zhang, Y. Zhu, S. Zheng, M. Li, A. Smola, and Z. Wang
“Partial and Asymmetric Contrastive Learning for Out-of-Distribution Detection in Long-Tailed Recognition”
International Conference on Machine Learning (ICML), 2022. (Long Talk) [Paper] [Code]
- H. Wang*, A. Zhang, S. Zheng, X. Shi, M. Li, and Z. Wang
“Removing Batch Normalization Boosts Adversarial Training”
International Conference on Machine Learning (ICML), 2022. [Paper] [Code]
- P. Wang*, Z. Fan*, T. Chen*, and Z. Wang
“Neural Implicit Dictionary Learning via Mixture-of-Expert Training”
International Conference on Machine Learning (ICML), 2022. [Paper] [Code]
- A. Jaiswal*, H. Ma, T. Chen*, Y. Ding, and Z. Wang
“Training Your Sparse Neural Network Better with Any Mask”
International Conference on Machine Learning (ICML), 2022. [Paper] [Code]
- T. Chen*, H. Zhang, Z. Zhang*, S. Chang, S. Liu, P. Chen, and Z. Wang
“Linearity Grafting: How Neuron Pruning Helps Certifiable Robustness”
International Conference on Machine Learning (ICML), 2022. [Paper] [Code]
- T. Chen*, X. Chen*, X. Ma, Y. Wang, and Z. Wang
“Coarsening the Granularity: Towards Structurally Sparse Lottery Tickets”
International Conference on Machine Learning (ICML), 2022. [Paper] [Code]
- T. Chen*, Z. Zhang*, S. Liu, Y. Zhang, S. Chang, and Z. Wang
“Data-Efficient Double-Win Lottery Tickets from Robust Pre-training”
International Conference on Machine Learning (ICML), 2022. [Paper] [Code]
- W. Redman, T Chen*, Z. Wang, and A. Dogra,
“Universality of Winning Tickets: A Renormalization Group Perspective”
International Conference on Machine Learning (ICML), 2022. [Paper] [Code]
- R. Ardywibowo, Z. Huo, Z. Wang, B. Mortazavi, S. Huang, and X. Qian
“VariGrow: Variational Architecture Growing for Task-Agnostic Continual Learning based on Bayesian Novelty”
International Conference on Machine Learning (ICML), 2022. [Paper] [Code]
- D. Hoang*, K. Zhou, T. Chen*, X. Hu, and Z. Wang
“AutoCoG: A Unified Data-Model Co-Search Framework for Graph Neural Networks”
International Conference on Automated Machine Learning (AutoML-Conf), 2022. [Paper] [Code]
- J. Hong, Z. Wang, and J. Zhou
“Dynamic Privacy Budget Allocation Improves Data Efficiency of Differentially Private Gradient Descent”
ACM Conference on Fairness, Accountability, and Transparency (FAccT), 2022. [Paper] [Code]
- T. Chen*, Z. Zhang*, Y. Cheng, A. Awadallah, and Z. Wang
“The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022. [Paper] [Code]
- T. Chen*, P. Wang*, Z. Fan*, and Z. Wang
“Aug-NeRF: Training Stronger Neural Radiance Fields with Triple-Level Physically-Grounded Augmentations”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022. [Paper] [Code]
- Z. Fan*, T. Chen*, P. Wang*, and Z. Wang
“CADTransformer: Panoptic Symbol Spotting Transformer for CAD Drawing”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022. (Oral) [Paper] [Code]
- T. Chen*, Z. Zhang*, Y. Zhang, S. Chang, S. Liu, and Z. Wang
“Quarantine: Sparsity Can Uncover the Trojan Attack Trigger for Free”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022. [Paper] [Code]
- X. Sun, A. Hassani, Z. Wang, G. Huang, and H. Shi
“DiSparse: Disentangled Sparsification for Multitask Model Compression”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022. [Paper] [Code]
- Z. Chen, Y. Chen, J. Liu, X. Xu, V. Goel, Z. Wang, H. Shi, and X. Wang
“VideoINR: Learning Video Implicit Neural Representation for Continuous Space-Time Super-Resolution”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022. [Paper] [Code]
- H. Ma, H. Zhao, Z. Lin, A. Kale, Z. Wang, T. Yu, J. Gu, S. Choudhary, and X. Xie
“EI-CLIP: Entity-aware Interventional Contrastive Learning for E-commerce Cross-modal Retrieval”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022. [Paper] [Code]
- W. Zheng*, T. Chen*, T. Hu*, and Z. Wang
“Symbolic Learning to Optimize: Towards Interpretability and Scalability”
International Conference on Learning Representations (ICLR), 2022. [Paper] [Code]
- X. Chen*, J. Zhang*, and Z. Wang
“Peek-a-Boo: What (More) is Disguised in a Randomly Weighted Neural Network, and How to Find It Efficiently”
International Conference on Learning Representations (ICLR), 2022. [Paper] [Code]
- T. Huang*, T. Chen*, S. Liu, S. Chang, L. Amini, and Z. Wang
“Optimizer Amalgamation”
International Conference on Learning Representations (ICLR), 2022. [Paper] [Code]
- T. Chen*, Z. Zhang*, P. Wang, S. Balachandra*, H. Ma, Z. Wang, and Z. Wang
“Sparsity Winning Twice: Better Robust Generalization from More Efficient Training”
International Conference on Learning Representations (ICLR), 2022. [Paper] [Code]
- P. Wang*, W. Zheng*, T. Chen*, and Z. Wang
“Anti-Oversmoothing in Deep Vision Transformers via the Fourier Domain Analysis: From Theory to Practice”
International Conference on Learning Representations (ICLR), 2022. [Paper] [Code]
- W. Chen*, W Huang, X. Du, X. Song, Z. Wang, and D. Zhou
“Auto-Scaling Vision Transformers without Training”
International Conference on Learning Representations (ICLR), 2022. [Paper] [Code]
- S. Yu*, T. Chen*, J. Shen*, H. Yuan, J. Tian, S. Yang, J. Liu, and Z. Wang
“Unified Visual Transformer Compression”
International Conference on Learning Representations (ICLR), 2022. [Paper] [Code]
- M. Lu*, X. Luo*, T. Chen*, W. Chen*, D. Liu, and Z. Wang
“Learning Pruning-Friendly Networks via Frank-Wolfe: One-Shot, Any-Sparsity, And No Retraining”
International Conference on Learning Representations (ICLR), 2022. (Spotlight) [Paper] [Code]
- W. Zheng*, E. Huang, N. Rao, S. Katariya, Z. Wang, and K. Subbian
“Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods”
International Conference on Learning Representations (ICLR), 2022. [Paper] [Code]
- S. Ding, T. Chen*, and Z. Wang
“Audio Lottery: Speech Recognition Made Ultra-Lightweight, Noise-Robust, and Transferable”
International Conference on Learning Representations (ICLR), 2022. [Paper] [Code]
- J. Hong, H. Wang*, Z. Wang, and J. Zhou
“Efficient Split-Mix Federated Learning for On-Demand and In-Situ Customization”
International Conference on Learning Representations (ICLR), 2022. [Paper] [Code]
- S. Liu, T. Chen*, Z. Atashgahi, X. Chen*, G. Sokar, E. Mocanu, M. Pechenizkiy, Z. Wang, and D. Mocanu
“Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity”
International Conference on Learning Representations (ICLR), 2022. [Paper] [Code]
- S. Liu, T. Chen*, X. Chen*, L. Shen, D. Mocanu, Z. Wang, and M. Pechenizkiy
“The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training”
International Conference on Learning Representations (ICLR), 2022. [Paper] [Code]
- Y. You*, Y. Cao, T. Chen*, Z. Wang, and Y. Shen
“Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How”
International Conference on Learning Representations (ICLR), 2022. [Paper] [Code]
- R. Ardywibowo, S. Boluki, Z. Wang, B. Mortazavi, S. Huang, and X. Qian
“VFDS: Variational Foresight Dynamic Selection in Bayesian Neural Networks for Efficient Human Activity Recognition”
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022. [Paper] [Code]
- S. Bibikar, H. Vikalo, Z. Wang, and X. Chen* (X. C. as corresponding author)
“Federated Dynamic Sparse Training: Computing Less, Communicating Less, Yet Learning Better”
AAAI Conference on Artificial Intelligence (AAAI), 2022. [Paper] [Code]
- Y. You*, T. Chen*, Z. Wang and Y. Shen
“Bringing Your Own View: Graph Contrastive Learning without Prefabricated Data Augmentations”
ACM International Conference on Web Search and Data Mining (WSDM), 2022. [Paper] [Code]
- Y. Jiang*, S. Chang, and Z. Wang
“TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up”
Advances in Neural Information Processing Systems (NeurIPS), 2021. [Paper] [Code]
- H. Wang*, C. Xiao, J. Kossaifi, Z. Yu, A. Anandkumar, and Z. Wang
“AugMax: Adversarial Composition of Random Augmentations for Robust Training”
Advances in Neural Information Processing Systems (NeurIPS), 2021. [Paper] [Code]
- T. Chen*, Y. Cheng, Z. Gan, J. Liu, and Z. Wang
“Data-Efficient GAN Training Beyond (Just) Augmentations: A Lottery Ticket Perspective”
Advances in Neural Information Processing Systems (NeurIPS), 2021. [Paper] [Code]
- X. Chen*, Y. Cheng, S. Wang, Z. Gan, J. Liu, and Z. Wang
“The Elastic Lottery Ticket Hypothesis”
Advances in Neural Information Processing Systems (NeurIPS), 2021. [Paper] [Code]
- T. Chen*, Y. Cheng, Z. Gan, L. Yuan, L. Zhang, and Z. Wang
“Chasing Sparsity in Vision Transformers: An End-to-End Exploration”
Advances in Neural Information Processing Systems (NeurIPS), 2021. [Paper] [Code]
- W. Zheng*, Q. Guo, H. Yang, P. Wang*, and Z. Wang
“Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems”
Advances in Neural Information Processing Systems (NeurIPS), 2021. [Paper] [Code]
- X. Chen*, T. Chen*, Z. Zhang*, and Z. Wang
“You Are Caught Stealing My Winning Lottery Ticket! Making a Lottery Ticket Claim its Ownership”
Advances in Neural Information Processing Systems (NeurIPS), 2021. [Paper] [Code]
- Z. Jiang*, T. Chen*, T. Chen, and Z. Wang
“Improving Contrastive Learning on Imbalanced Seed Data via Open-World Sampling”
Advances in Neural Information Processing Systems (NeurIPS), 2021. [Paper] [Code]
- X. Chen*, J. Liu, Z. Wang, W. Yin
“Hyperparameter Tuning is All You Need for LISTA”
Advances in Neural Information Processing Systems (NeurIPS), 2021. [Paper] [Code]
- J. Wu*, X. Dai, D. Chen, Y. Chen, M. Liu, Y. Yu, Z. Wang, Z. Liu, M. Chen, and L. Yuan
“Stronger NAS with Weaker Predictors”
Advances in Neural Information Processing Systems (NeurIPS), 2021. [Paper] [Code]
- B. Pan, R. Panda, Y. Jiang*, Z. Wang, R. Feris, and A. Oliva
“IA-RED2: Interpretability-Aware Redundancy Reduction for Vision Transformers”
Advances in Neural Information Processing Systems (NeurIPS), 2021. [Paper] [Code]
- S. Liu, T. Chen*, X. Chen*, Z. Atashgahi, L. Yin, H. Kou, L. Shen, M. Pechenizkiy, Z. Wang, and D. Mocanu
“Sparse Training via Boosting Pruning Plasticity with Neuroregeneration”
Advances in Neural Information Processing Systems (NeurIPS), 2021. [Paper] [Code]
- X. Ma, G. Yuan, X. Shen, T. Chen*, X. Chen*, X. Chen*, N. Liu, M. Qin, S. Liu, Z. Wang, and Y. Wang
“Sanity Checks for Lottery Tickets: Does Your Winning Ticket Really Win the Jackpot?”
Advances in Neural Information Processing Systems (NeurIPS), 2021. [Paper] [Code]
- Y. Jiang*, H. Zhang, J. Zhang, Y. Wang, Z. Lin, K. Sunkavalli, S. Chen, S. Amirghods, S. Kong, and Z. Wang
“SSH: A Self-Supervised Framework for Image Harmonization”
IEEE International Conference on Computer Vision (ICCV), 2021. [Paper] [Code]
- X. Gong*, H. Wang, M. Shou, M. Feiszli, Z. Wang, and Z. Yan
“Searching for Two-Stream Models in Multivariate Space for Video Recognition”
IEEE International Conference on Computer Vision (ICCV), 2021. [Paper] [Code]
- Y. Guo, H. Yuan, J. Tan, Z. Wang, S. Yang, and J. Liu
“GDP: Stabilized Neural Network Pruning via Gates with Differentiable Polarization”
IEEE International Conference on Computer Vision (ICCV), 2021. [Paper] [Code]
- Y. You*, T. Chen*, Y. Shen, and Z. Wang
“Graph Contrastive Learning Automated”
International Conference on Machine Learning (ICML), 2021. (Long Talk) [Paper][Code]
- M. Zhu*, T. Chen*, and Z. Wang
“Sparse and Imperceptible Adversarial Attack via a Homotopy Algorithm”
International Conference on Machine Learning (ICML), 2021. (Long Talk) [Paper][Code]
- T. Chen*, Y. Sui, X. Chen*, A. Zhang, and Z. Wang
“A Unified Lottery Ticket Hypothesis for Graph Neural Networks”
International Conference on Machine Learning (ICML), 2021. [Paper][Code]
- Z. Jiang*, T. Chen*, B. Mortazavi, and Z. Wang
“Self-Damaging Contrastive Learning”
International Conference on Machine Learning (ICML), 2021. [Paper][Code]
- Z. Zhang*, X. Chen*, T. Chen*, and Z. Wang
“Efficient Lottery Ticket Finding: Less Data is More”
International Conference on Machine Learning (ICML), 2021. [Paper][Code]
- X. Chen*, Y. Cheng, S. Wang, Z. Gan, Z. Wang, and J. Liu
“EarlyBERT: Efficient BERT Training via Early-Bird Lottery Tickets”
Annual Meeting of the Association for Computational Linguistics (ACL), 2021. (Long) [Paper][Code]
- J. Hong, Z. Zhu, S. Yu, Z. Wang, H. Dodge, and J. Zhou
“Federated Adversarial Debiasing for Fair and Transferable Representations”
ACM Conference on Knowledge Discovery and Data Mining (KDD), 2021. [Paper] [Code]
- T. Chen*, J. Frankle, S. Chang, S. Liu, Y. Zhang, M. Carbin, and Z. Wang
“The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021. [Paper][Code]
- Z. Wang, H. Wang*, T. Chen*, Z. Wang, and K. Ma
“Troubleshooting Blind Image Quality Models in the Wild”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021. [Paper] [Code]
- P. Cao, Z. Wang, and K. Ma
“Debiased Subjective Assessment of Real-World Image Enhancement”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021. [Paper] [Code]
- H. Ma, T. Chen*, T. Hu*, C. You, X. Xie, and Z. Wang
“Undistillable: Making A Nasty Teacher That CANNOT Teach Students”
International Conference on Learning Representations (ICLR), 2021. (Spotlight) [Paper][Code]
- T. Chen*, Z. Zhang*, S. Liu, S. Chang, and Z. Wang
“Long Live the Lottery: The Existence of Winning Tickets in Lifelong Learning”
International Conference on Learning Representations (ICLR), 2021. [Paper] [Code]
- T. Chen*, Z. Zhang*, S. Liu, S. Chang, and Z. Wang
“Robust Overfitting May be Mitigated by Properly Learned Smoothening”
International Conference on Learning Representations (ICLR), 2021. [Paper] [Code]
- W. Chen*, X. Gong*, and Z. Wang
“Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective”
International Conference on Learning Representations (ICLR), 2021. [Paper] [Code]
- W. Chen*, Z. Yu, S. Mello, S. Liu, J. Alvarez, Z. Wang, and A. Anandkumar
“Contrastive Syn-to-Real Generalization”
International Conference on Learning Representations (ICLR), 2021. [Paper] [Code]
- T. Meng, X. Chen*, Y. Jiang*, and Z. Wang
“A Design Space Study for LISTA and Beyond”
International Conference on Learning Representations (ICLR), 2021. [Paper] [Code]
- J. Shen*, X. Chen*, H. Heaton, T. Chen*, J. Liu, W. Yin, and Z. Wang
“Learning A Minimax Optimizer: A Pilot Study”
International Conference on Learning Representations (ICLR), 2021. [Paper] [Code]
- J. Shen*, H. Wang*, S. Gui, J. Tan, Z. Wang, and J. Liu
“UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems”
International Conference on Learning Representations (ICLR), 2021. [Paper] [Code]
- J. Hong, H. Wang*, Z. Wang, and J. Zhou
“Learning Model-Based Privacy Protection under Budget Constraints”
AAAI Conference on Artificial Intelligence (AAAI), 2021.[Paper] [Code]
- T. Chen*, W. Zhang, J. Zhou, S. Chang, S. Liu, L. Amini, and Z. Wang
“Training Stronger Baselines for Learning to Optimize”
Advances in Neural Information Processing Systems (NeurIPS), 2020. (Spotlight) [Paper] [Code]
- H. Wang*, T. Chen*, S. Gui, T. Hu*, J. Liu, and Z. Wang
“Once-for-All Adversarial Training: In-Situ Tradeoff between Robustness and Accuracy for Free”
Advances in Neural Information Processing Systems (NeurIPS), 2020. [Paper] [Code]
- T. Chen*, J. Frankle, S. Chang, S. Liu, Y. Zhang, Z. Wang, and M. Carbin
“The Lottery Ticket Hypothesis for Pre-trained BERT Networks”
Advances in Neural Information Processing Systems (NeurIPS), 2020. [Paper] [Code]
- X. Chen*, Z. Wang, S. Tang, and K. Muandet
“MATE: Plugging in Model Awareness to Task Embedding for Meta Learning”
Advances in Neural Information Processing Systems (NeurIPS), 2020. [Paper] [Code]
- Z. Jiang*, T. Chen*, T. Chen, and Z. Wang
“Robust Pre-Training by Adversarial Contrastive Learning”
Advances in Neural Information Processing Systems (NeurIPS), 2020. [Paper] [Code]
- Y. You*, T. Chen*, Y. Sui, T. Chen, Z. Wang, and Y. Shen
“Graph Contrastive Learning with Augmentations”
Advances in Neural Information Processing Systems (NeurIPS), 2020. [Paper] [Code]
- H. You, X. Chen*, Y. Zhang, C. Li, S. Li, Z. Liu, Z. Wang, and Y. Lin
“ShiftAddNet: A Hardware-Inspired Deep Network”
Advances in Neural Information Processing Systems (NeurIPS), 2020. [Paper] [Code]
- Y. Fu, H. You, Y. Zhao, Y. Wang, C. Li, K. Gopalakrishnan, Z. Wang, and Y. Lin
“FracTrain: Fractionally Squeezing Bit Savings Both Temporally and Spatially for Efficient DNN Training”
Advances in Neural Information Processing Systems (NeurIPS), 2020. [Paper] [Code]
- H. Wang*, S. Gui, H. Yang, J. Liu, and Z. Wang
“GAN Slimming: All-in-One GAN Compression by A Unified Optimization Framework”
European Conference on Computer Vision (ECCV), 2020. (Spotlight) [Paper][Code]
- S. Yang*, Z. Wang, J. Liu, and Z. Guo
“Deep Plastic Surgery: Robust and Controllable Image Editing with Human-Drawn Sketches”
European Conference on Computer Vision (ECCV), 2020. [Paper] [Code]
- C. Li, T. Chen*, H. You, Z. Wang, and Y Lin
“HALO: Hardware-Aware Learning to Optimize”
European Conference on Computer Vision (ECCV), 2020. [Paper] [Code]
- Z. Huo, A. PakBin, X. Chen*, N. Hurley, Y. Yuan*, X. Qian, Z. Wang, S. Huang, and B. Mortazavi
“Uncertainty Quantification for Deep Context-Aware Mobile Activity Recognition and Unknown Context Discovery”
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020. [Paper] [Code]
- W. Chen*, Z. Yu, Z. Wang, and A. Anandkumar
“Automated Synthetic-to-Real Generalization”
International Conference on Machine Learning (ICML), 2020. [Paper] [Code]
- X. Chen*, W. Chen*, T. Chen*, Y. Yuan*, C. Gong, K. Chen, and Z. Wang
“Self-PU: Self Boosted and Calibrated Positive-Unlabeled Training”
International Conference on Machine Learning (ICML), 2020. [Paper] [Code]
- Y. You*, T. Chen*, Z. Wang, and Y. Shen
“When Does Self-Supervision Help Graph Convolutional Networks?”
International Conference on Machine Learning (ICML), 2020. [Paper] [Code]
- R. Oftadeh, J. Shen*, Z. Wang, and D. Shell
“Eliminating the Invariance on the Loss Landscape of Linear Autoencoders”
International Conference on Machine Learning (ICML), 2020. [Paper] [Code]
- Y. Fu, W. Chen*, H. Wang*, H. Li, Y. Lin, and Z. Wang
“AutoGAN-Distiller: Searching to Compress Generative Adversarial Networks”
International Conference on Machine Learning (ICML), 2020. [Paper] [Code]
- R. Ardywibowo, S. Boluki, X. Gong*, Z. Wang, and X. Qian
“NADS: Neural Architecture Distribution Search for Uncertainty Awareness”
International Conference on Machine Learning (ICML), 2020. [Paper] [Code]
- Y. Zhao, X. Chen*, Y. Wang, C. Li, Y. Xie, Z. Wang, and Y. Lin
“SmartExchange: Trading Higher-cost Memory Storage/Access for Lower-cost Computation”
IEEE/ACM International Symposium on Computer Architecture (ISCA), 2020. [Paper] [Code]
- T. Chen*, S. Liu, S. Chang, Y. Cheng, L. Amini, and Z. Wang
“Adversarial Robustness: From Self-Supervised Pretraining to Fine-Tuning”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020. [Paper] [Code]
- Z. Jiang*, B. Liu, S. Schulter, Z. Wang, and M. Chandraker
“Peek-a-boo: Occlusion Reasoning in Indoor Scenes with Plane Representations”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020. (Oral) [Paper] [Code]
- Y. You*, T. Chen*, Z. Wang, and Y. Shen
“L2-GCN: Layer-Wise and Learned Efficient Training of Graph Convolutional Networks”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020. [Paper] [Code]
- T. Hu*, T. Chen*, H. Wang*, and Z. Wang
"Triple Wins: Boosting Accuracy, Robustness and Efficiency Together by Enabling Input-Adaptive Inference"
International Conference on Learning Representations (ICLR), 2020. [Paper] [Code]
- W. Chen*, X. Gong*, X. Liu, Q. Zhang, Y. Li and Z. Wang
"FasterSeg: Searching for Faster Real-time Semantic Segmentation"
International Conference on Learning Representations (ICLR), 2020. [Paper] [Code]
- H. Wang*, T. Chen*, Z. Wang, and K. Ma
"I am Going MAD: Maximum Discrepancy Competition for Comparing Classifiers Adaptively"
International Conference on Learning Representations (ICLR), 2020. [Paper] [Code]
- H. You, C. Li, P. Xu, Y. Fu, Y. Wang, X. Chen*, R. Baraniuk, Z. Wang, and Y. Lin
“Drawing Early-Bird Tickets: Toward More Efficient Training of Deep Networks"
International Conference on Learning Representations (ICLR), 2020. (Spotlight) [Paper] [Code]
- J. Shen*, Y. Wang*, P. Xu, Y. Fu, Z. Wang, and Y. Lin
“Fractional Skipping: Toward Finer-Grained Dynamic Inference”
AAAI Conference on Artificial Intelligence (AAAI), 2020. [Paper] [Code]
- S. Mohseni*, M. Pitale, J. Yadawa, and Z. Wang
“Self-Supervised Learning for Generalizable Out-of-Distribution Detection”
AAAI Conference on Artificial Intelligence (AAAI), 2020. [Paper] [Code]
- Z. Jiang*, Y. Wang*, X. Chen*, P. Xu, Y. Zhao, Y. Lin, and Z. Wang
“E2-Train: Training State-of-the-art CNNs with Over 80% Energy Savings”
Advances in Neural Information Processing Systems (NeurIPS), 2019. [Paper] [Code]
- S. Gui, H. Wang*, H. Yang, C. Yu, Z. Wang, and J. Liu
“Model Compression with Adversarial Robustness: A Unified Optimization Framework”
Advances in Neural Information Processing Systems (NeurIPS), 2019. [Paper] [Code]
- Y. Cao, T. Chen*, Z. Wang, and Y. Shen
“Learning to Optimize in Swarms”
Advances in Neural Information Processing Systems (NeurIPS), 2019. [Paper] [Code]
- X. Jia, S. Wang*, X. Liang, A. Balagopal, D. Nguyen, M. Yang, Z. Wang, X. Qian, X. Ji, and S. Jiang
“Cone-Beam Computed Tomography (CBCT) Segmentation by Adversarial Learning Domain Adaptation”
Medical Image Computing and Computer Assisted Interventions (MICCAI), 2019 [Paper] [Code]
- R. Ardywibowo, G. Zhao, Z. Wang, B. Mortazavi, S. Huang, and X. Qian,
“Activity Monitoring with Uncertainty Quantification in Switching Gaussian Process Models”
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019 [Paper] [Code]
- S. Yang*, Z. Wang, Z Wang, N. Xu, J. Liu, and Z. Guo
“Controllable Artistic Text Style Transfer via Shape-Matching GAN”
IEEE International Conference on Computer Vision (ICCV), 2019. (Oral) [Paper] [Code]
- Z. Wu*, K. Suresh, P. Narayanan, H. Xu, H. Kwon, and Z. Wang
“Delving into Robust Object Detection from Unmanned Aerial Vehicles: A Deep Nuisance Disentanglement Approach”
IEEE International Conference on Computer Vision (ICCV), 2019. [Paper] [Code]
- X. Gong*, S. Chang, Y. Jiang*, and Z. Wang
“AutoGAN: Neural Architecture Search for Generative Adversarial Networks”
IEEE International Conference on Computer Vision (ICCV), 2019. [Paper] [Code]
- T. Chen*, S. Ding, J. Xie, Y. Yuan*, W. Chen*, Y. Yang, Z. Ren, and Z. Wang
“ABD-Net: Attentive but Diverse Person Re-Identification”
IEEE International Conference on Computer Vision (ICCV), 2019. [Paper] [Code]
- O. Kupyn, T. Martyniuk, J. Wu*, and Z. Wang
“DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better”
IEEE International Conference on Computer Vision (ICCV), 2019. [Paper] [Code]
- E. Ryu, J. Liu, S. Wang*, X. Chen*, Z. Wang, and W. Yin
“Plug-and-Play Methods Provably Converge with Properly Trained Denoisers”
International Conference on Machine Learning (ICML), 2019. [Paper] [Code]
- W. Chen*, Z. Jiang*, Z. Wang, K. Cui, and X. Qian
“Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-high Resolution Images”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019. (Oral) [Paper] [Code]
- S. Li, I. B. Araujo*, W. Ren, Z. Wang, E. K. Tokuda*, R. Hirata, R. Cesar, J. Zhang, X. Guo, and X. Cao
“Single Image Deraining: A Comprehensive Benchmark Analysis”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019. [Paper] [Code]
- J. Liu, X. Chen*, Z. Wang, and W. Yin
“ALISTA: Analytic Weights Are As Good As Learned Weights in LISTA”
International Conference on Learning Representations (ICLR), 2019. [Paper] [Code]
- X. Chen*, J. Liu, Z. Wang, and W. Yin
“Theoretical Linear Convergence of Unfolded ISTA and Its Practical Weights and Thresholds”
Advances in Neural Information Processing Systems (NeurIPS), 2018. (Spotlight) [Paper] [Code]
- N. Bansal*, X. Chen*, and Z. Wang
“Can We Gain More from Orthogonality Regularizations in Training Deep CNNs?”
Advances in Neural Information Processing Systems (NeurIPS), 2018. [Paper] [Code]
- Z. Wu*, Z. Wang, Z. Wang, and H. Jin
“Towards Privacy-Preserving Visual Recognition via Adversarial Training: A Pilot Study”
European Conference on Computer Vision (ECCV), 2018. [Paper] [Code]
- M. Sun, I. Baytas, L. Zhan, Z. Wang, and J. Zhou
“Subspace Network: Deep Multi-Task Censored Regression for Modeling Neurodegenerative Diseases”
ACM Conference on Knowledge Discovery and Data Mining (KDD), 2018. [Paper] [Code]
- J. Wu*, Y. Wang*, Z. Wu*, Z. Wang, A. Veeraraghavan, and Y. Lin
“Deep k-Means: Re-Training and Parameter Sharing with Harder Cluster Assignments for Compressing Deep Convolutions”
International Conference on Machine Learning (ICML), 2018. [Paper] [Code]